AVC, Application View Controller

User Manual

version 0.10.0

Fabrizio Pollastri <f.pollastri@inrim.it>

mailto:pollastri@inrim.it

AVC, Application View Controller User Manual

Copyright © 2007-2015 Fabrizio Pollastri

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 [19] or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is at the end of this document.

AVC outline
Current version is AVC 0.10.0, beta status, released 23-Apr-2015.

Tested on:

Kubuntu 14.04 LTS Trusty Tahr, FP 23-Apr-2015.
author:

Fabrizio Pollastri, e-mail: f.pollastri (at) inrim.it.
The AVC web site is hosted at http://avc.inrim.it

J<e X

Author note

The author will be happy to ear about any usage of AVC. Please, feel free to send questions,
corrections and suggestions to the author. The poor English of this manual requires special
indulgence.

Document info

author: Fabrizio Pollastri
created: 2007-07-10-11.25.23 PM
modified: 2015-04-23-15.06.58
version: 224

Fabrizio Pollastri 2/115

http://avc.iriti.cnr.it/

AVC, Application View Controller User Manual

Table of Contents

L INErOAUCHION. e 7
R AT o 1= | T PP PP PRPPP 7

L 2, FEATUI S et 7
1.3, QUICK S et 8
I 1 13 =Y 1= X o o 8
P (o]0 oY 0 T AT £=] =] (=] Ll PP 10
P Y] o] o Jo] g =T BTN/ To [0 = AT TP 10
2.2. Widgets-variables names matChing... ..o 11
2.3, MatChiNg NamMESPACES. ... ettt et e e et e e et et e e e e e et a e e eaas 11
2.4, Connected OB JECES. ... e 11
2.5. Static and dynamiC CONNECHIONS.c..iiii i e es 11
2.6. Uniform separation between application logic and GUI...........cccooiiiiiiiiiciiiicee 12
2.7, AVC NI Al ZatiON. et 12
2.8. Connecting widgets with variables..........co i, 12
2.9. Normal abstract widget COleCtioN. ... 13
21U o] o [PPSR 13

CRECK BULEON . L.t e e e 13
(0o 0] oTo TN oo) G PR 13

Bty 13

= o 1= PP 13

e o Te [YT T oY PP 14

2= T o T o 10)t (o o 14

15 1o [o PPN 14

1Y o1 a I 10 1 o] o PSP P TP UPPRPT 14

SEAEUS DAl e 14

X VIEW/ I ... e 14

TOGGIE DULEON. . e 14

2.10. Advanced abstract widget COlleCtioN........ooiei i 15
L= =T o o - T o 15

@0] [o] g1 =1 =T ot 1o o PSP 15

S Y P 16

B LTI 25 PPt 16

2.11. Connection update trigger EVENTS. 17
B G- T Y PP 18
2.12. 1. General Caveal. .o 18
2.12.2. Widget toolkit specCifiC Caveat.......c.coiiiiiii 18
2.13. Testing and debUGGING.....c.uiiuiiiiiiei e e e e e as 19
2.13.1. Testing printout for example gtk3_counter.py.......ccooviiiiiiii 19

3. GT K24 1 O N . . i 21
I 70 R 1 o Yo W] [T e L= o Y=Y T 1] o Lol == 21

S L1 o o 1<) a1 o 411 o T PSPPSR 21
3.3, StatUS DA Widg et e i 21
o g =T g - Yot e (=] o [=] PP 21
4. GTKB4 FE OIENC . et e 22
L I T Yo [TR0 1] =T g o [T g Lo 1= PR 22
A2 WGt NMaAMING. i e 22
N T [) =] = [ol =l L= o | 1= TP 22
5. Qt4 and Qt5 refereNCe. . .cu i 23
5.1. MOAUIE AEPENAENCIES. .. ettt ettt e et e et e et e e et e e e e ae e e eannas 23
5.2, WG MAMIING . e 23

Fabrizio Pollastri 3/115

AVC, Application View Controller User Manual

5.3. APPHCAtION GUI ClaSS. ... i ettt et e e eaas 23
o T a1 =T = Lol =T o [=Y] o | 1= ol PP 23
B. TK MO O N e 24
oI Y o To [V] [l e (=T o1 =T gL 1=T o Lol 1P UPTRPTPPR 24
IRV o o 1<) o T o 011 o T PP 24
ST T a1 =T = Lol =T e [=Y] o | 1= o PP 24
7. WXWIAQES Mef@reNCe. .. i 25
/% Y o Yo U1 F= R0 1Y o Y=Y g T [=] o Vo 1= 25
VAVl o (o 1<) d o T= 0 a1 [T PP UP PP 25
G T Y o] o] I et= Yo [o] o IK €1 U 1 ol = =3 25
A N (a1 (=] g r= Yol =l [T o o < PP 25
8. SWING M OIENC. et 26
8.1. MOAUIE AEPENAENCIES. .. ettt ettt et e et e et e e et e e et e e een e eannas 26
I LT o (o T=] =1 0 1 T PO PP PRPPTPR 26
9. GTKZ24 @XaMPIES. e i 27
9. 1. SPIN DULEON XA P . ittt 27
9. L. L. PYERON SOUICE. . ettt 27

9.2, Calendar EXamMI Pl .. e 28
9.2.0. PYENON SOUICE. ..ot ettt ettt e e e e ea e aaes 28

9.3. Color SeleCtion EXaMPIE. ..o 29
9.3.0. PYENON SOUICE. ..ot ettt et e e et e en e anas 30

1 I o1 U] a1 =T gl D& [a'a] o [P 31
9.4.0. PYENON SOUICE...cei i ettt e et e et et et e et e e en e anns 31

0.5, Lab el EXaAMIPI .t it 33
9.5.0. PYENON SOUICE...cei i et e e e ea e anas 33

0.6. ShOWCASE EXAMIPIE. .. ittt e e e e e e e 35
9.6.1. PYENON SOUICE.... e e r e ans 35

9.7. CoUNEAOWN EXAMPIE ... ettt ettt e et e et e et e e e e eanas 38
O.7.1. PYENON SOUICE. ... i e e 38

O.8. LiSt tre@ VIEW @XaMIPIE e ittt et e 41
0.8.1. PYENON SOUICE ... e 41

10, GTKB 4 @XAMPIES ettt 44
10.1. SPin DULEON @XaMPIE. ... e e 44
L10.1.0. PYERON SOUICE. . ettt ettt e e e e et e et e e e e e en e eens 44

11, QU4 eXamMPIES. e 46
11.1. SPIN DOX @XAMIPIE. e it aas 46
O I A o g o =T T U o = PP 46
11,2, Calendar @XAMPI . . it ans 47
A R o g o o =T T U o = PP 47
11.3. Color dialog @XamPIe. ... e 48
0 T A o g o o K=o T U ol = PP TP 49
I S Ol o TH] oL (=] G =D =Y 0 0] o] L= TP 51
N R oV o o o =Y 101 ol =P 51
11,5, Label @XamMDI. . i eas 53
11,5, 0. PYENON SOUICE. . et e 53
11.6. ShOWCASE @XAMIPIO. .. et ittt et e e e e 54
L11.6.0. PYENON SOUICE.. et 55
11.7. CoOUNEAOWN @XAMIPIO. . ittt e et e e e e e e e e e et e et reennern e e s e e ens 58

N A R =V o o o =Y 101 o =P 59
11.8. List tre@ VIiEW @XamIPle. . e 61
L11.8. L. PYENON SOUICE. it 61

Fabrizio Pollastri 4/115

AVC, Application View Controller User Manual

L2, T EXAMIPI S ittt 64
12,1, SPIN DOX @XAMIP O et 64
12,00 PYERON SOUICE. ..ottt ettt e e e et e e et et e e e ea e eens 64
I Ole 10| o1 (=T gl =3 = T2 0] o] L= TP 65
12.2.0. PYERON SOUICE. . ettt et e et e e ea e ans 65
12,3, Lab el XAl e et 67
1A T A oV o g o o =T T U o = PP 67

1 2.4, ShOWCASE EXAMI Pl e it ittt as 69
B R oV o g o o =T T U o = PP 69
A T 101U g} o [0} T T =D =Y] o] L= PPN 72
12.5. 1. PYERON SOUICE. ...ttt e e et e e e e eas 72
13, WXWiIdgets @XamPles. ... 75
13.1. SPin CONEIOl @XamMPIE. ... et e 75
L3, L. L. PYERON SOUICE. ittt 75
13,2, Calendar @XAMIPI . e e 76
13.2.0. PYERON SOUICE. ..ot et e e et e en e ens 77
13.3. Color dialog @XamIPle. ... 77
13.3.0. PYERON SOUICE. ..t et et e e et e e ea e ens 78

R I Ol e YU o1 (=T gl =3 = T 0 0] o] L= TP 79
13.4. 0. PYENON SOUICE. . cuiiiii ettt et et e et e e et et e e en e ens 80
13,5, Label XAl e 82
13.5.0. PYENON SOUICE. . cei ittt e e ea e ens 82
13.6. ShOWCASE BXAMIPI .t it it e as 83
0 T T A oV o g o o =T T U o = PP 84

0 T A 101U g o [0} T =D =Y] o] = PPN 87
0 TR A oV g o o =T T U o = PP 87
13.8. List tree control eXample. ... 89
13.8. 1. PYENON SOUICE...u it e et e e e e eas 90
14, SWING EXAMPIES. .. i 92
14,0, BUEEON @XaMPIE ittt aas 92
o O R 1V g T] I o1 U o] =TS TPTP 92
14.2. Check DOX @XaMIPIE. .. e ettt e 93
L14.2.0. JYENON SOUICE. ...ttt ettt e et et e et et e et e e e en e eens 93
14.3. Color ChOOSEr @XaMIPIE. ... e e e 94
L14.3.0. PYENON SOUICE. . ceniii ittt a e e et e et ea e ens 94
14.4. ComMDO DOX @XamMPIE. . e 95
o R 1V g T] I o T U o] < TP 95
14.5. CoOUNEAOWN @XAMIPIE. . ittt e et e e e e e e e e et e et reen e e sn e e e e eeneens 96
L14.5.0. JYERON SOUICE. ...ttt e e et e et e e e e e e e e e ea e ens 97
I ST 11U oY =T =D e= 1 0 o [P 99
B A V7 g o o Yo 10 | o = PP 99
14,7, Progress Dar @Xam DI, . i 101
o T V] g o Yo 1§ | o = PP 101
14.8. Radio bULLON eXamiple. .. . 102
L14.8.1. JYENON SOUICE ... it e e e e e e e e e e e e e n et e e e enaenns 102
14,9, SldEr @XaAmMIDIE e e e 103
e T R Y o o o =0 10 | o = P 103
14,10, SPINNEI EXAMNIP .t ittt 104
R 0 I Y T T =Y LU o = PP 104
14,11, Table @XaAMIPIE. e e e 105
R I I T Y T T =Y o 10 o =P 105
14.12. TeXt @rea @XaMIPI. . e it 107
R I T Y T T =Y o LU o = PP 107
14.13. TeXt field @XamIPIO. . e et e 108
1 0 R 1V o o] =T o 10 ol T PP RPRPN 108

Fabrizio Pollastri 5/115

AVC, Application View Controller User Manual

14.14. Toggle BUtton @XampPle. et 109
R I o T Y T T =Y o LU o = PP 109
I R T (=T D=1 o] o L= T PSP PP PPT PP 110
R T R 1V o o] =T o 10 ol T PRSPPI 111

1S, R EIENCES. . it 113

Fabrizio Pollastri 6/115

AVC, Application View Controller User Manual

1. Introduction

1.1. What is

AVC, the Application View Controller is a multiplatform, fully automatic, live connection among
graphical interface widgets and application variables for the python [1] language.

AVC supports in a uniform way the most popular widget toolkits: GTK2+ and GTK3+ [2], Qt4
and Qt5 [3], Tk [4], wxWidgets [5]. The Swing [6] widget toolkit for the java [7] environment is
also supported via the jython [8] compiler.

AVC is a normal python package that can be imported by any python or jython application.

Graphical User Interfaces (GUIs) are the easy way to input data to an application software and
to view the data produced by the application. The management of data exchanges between the
GUI and the application is a central problem in GUI programming, it absorbs a relevant part of
the programming effort. AVC makes the programming of this data exchanges very easy.

AVC is a fully transparent and automatic connection between the values displayed and entered
by GUI widgets and the variables of an application using the GUI. The connection is
bidirectional. If the application sets a new value into a connected variable, AVC copies the new
value into all the widgets connected to the variable. If a new value is entered by a widget, AVC
copies the new value into all other widgets connected the variable, into the variable and
optionally notifies the change to the application. The connections are autogenerated by looking
for matching names between widget names and variable names.

The application is completely unaware of the presence of the connected variables, it reads and
writes them as normal variables. Only if the application requires to be immediately notified
when a connected variable changes value, a notify handler must be added to the application.

1 . 2 « Features

Fully transparent widget-variable connections

Automatic connection by matching widgets and variables names

Multiple matching namespaces

Dynamic connections

No design pattern, no application redesign, no widget toolkit dependent code,

separation between application logic and GUI.

Multiple widget toolkits support: GTK2+, GTK3+, Qt4, Qt5, Tk, wxWidgets, Swing.

e Full compatibility and support for Glade Error: Reference source not found, Qt Designer
[15], Visual Tcl [16] and wxGlade [17] interface design tools.

e Normal widgets: button, check button, combo box, entry, label, progress bar, radio
button, slider, spin button, status bar, text view/edit, toggle button.

e Advanced widgets: calendar, color selection, list view, tree view.

e Normal variable types: boolean, integer, float, string, list, tuple.

e Advanced variable types: calendar tuple, color tuple, 2D table (list of lists), hierarchical
tree (dictionary with paths of values inside tree as keys)

e Multiple widgets to one variable connection

e Dual update timing of variable value views: immediate or periodic.

e Testing printout logging activity with selectable verbosity

e Python package written in pure python

e Free software (GNU GPL license version 3 [18])

Fabrizio Pollastri 7/115

AVC, Application View Controller User Manual

1 l3 " QUiCk start

Essential instructions to get started with AVC. This instructions are valid for all supported
toolkits. The AVC package is supposed already installed. For a simple example, see further
along the section “Spinbutton/Spinbox/SpinCtrl/Spinner Example” of the widget toolkit of
interest.

Import the python binding of the widget toolkit of choice, then Import the AVC package.

‘from avc import * ‘

Derive the application class from the AVC class. Let suppose that the application class name is
"theApp".

‘class theApp (AVC): ‘

In the class __init _ method create the GUI previously designed with your preferred interface
designer or create it statement by statement, naming the widgets with the rule described
below.

Define all variables to be connected in the application by assigning them to the desired initial
values. Each variable must have a name equal to the matching name of the widgets that are to
be connected to the variable. A widget matching name is the widget name itself, if it does not
contain a double underscore ' ', otherwise is the name part before the double underscore.

In the application, after the creation of the GUI and after the instantiation of all the variables to
be connected, call the instance method 'avc_init'. Let suppose that the application instance
name is "the_app".

‘theiapp.avciinit() ‘

All is done for AVC. When the application enters the toolkit event loop, AVC takes full control
over data exchange between the connected variables and widgets.

1.4. installation
AVC can be installed by both python and jython.

To run AVC with python, Python 2.2 or later must already be installed. The latest release is
recommended. Python is available from http://www.python.org/.

To run AVC with jython, Jython 2.5.1 or later must already be installed. The latest release is
recommended. Python is available from http://www.jython.org/.

The first step is to download the AVC tarball from http://avc.inrim.it/dist/.

Open a shell. Unpack the tarball in a temporary directory (not directly in Python's/Jython's
site-packages). Commands:

tar zxf avc-X.Y.Z.tar.gz

X, Y and Z are the major and minor version numbers of the tarball.

Go to the directory created by expanding the tarball:
cd avc-X.Y.Z

Get root privileges:

Su

Fabrizio Pollastri 8/115

http://avc.iriti.cnr.it/dist/
http://www.python.org/
http://www.python.org/

AVC, Application View Controller User Manual

(enter root password)

To install for python type:
python setup.py install

To install for jython type:

jython setup.py install

If the python/jython executable isn't on your path, you'll have to specify the complete path,
such as /usr/local/bin/python or usr/local/bin/jython.

Fabrizio Pollastri 9/115

AVC, Application View Controller

This is the part of the user manual common to all supported widget toolkits: GTK+, Qt4, Tk,

2. Common reference

wxWidgets and Swing.

2.1. Supported widgets

The following table shows the correspondences between the AVC abstract widget types and the

names of the real widgets in the supported toolkits.

Notes

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Table 1: Map of supported widget

User Manual

AVC real widgets by supported toolkits
abstract GTK2+ Qta . .
widget type |(GTK3+ Qt5 Tk wxWidgets|Swing
Button
(1)
Button Button QPushButton Button BitmapButton JButton
Calendar Calendar QCalendar - CalendarCtrl -
Check Button ([CheckButton [QCheckBox Checkbutton |CheckBox JCheckBox
Color Selection |ColorSelection |QColorDialog - ColorPicker [JColorChooser
ComboBox Choice
(2) -
Combo Box ComboBoxText QComboBox ComboBox JComboBox
Entry Entry QLineEdit Entry TextCtrl JTextField
Label Label QLabel Label StaticText JLabel
List View TreeView QTreeWidget - ListCtrI{3) JTable
Progress Bar ProgressBar QProgressBar - Gauge JProgressBar
Radio Button |RadioButton |QRadioButton |Radiobutton |RadioBox JRadioButton
Slider gfglae'e vseale | hsiigerta Scale Slider JSlider
Spin Button SpinButton QSpinBox(3! Spinbox SpinCtrl JSpinner
QdoubleSpinbox

Status Bar StatusBart® - - StatusBar® |-
Text View TextView QTextEdit Text TextCtrl JTextArea
Toggle Button [ToggleButton |QPushButton‘Z! [Togglebutton|ToggleButton |JToggleButton
Tree View TreeView QTreeWidget - TreeCtrl(8) JTree(8)

setToggleButton(True) .
(8) TreeCtrl and JTree do not support columns and header.

Fabrizio Pollastri

10/115

QPushButton with "toggleButton" property set to "False" (the default).
QComboBox with "editable" property set to "False" (the default).
ListCtrl with property “style” set to “report”.
QSlider manages integer values only.
QSpinBox manages integer values only.
StatusBar is used as a simple output label.
QPushButton with "toggleButton" property set to "True". Set it with QPushButton method

AVC, Application View Controller User Manual

2.2. Widgets-variables names matching

AVC connects widgets and variables using a names matching procedure with the following
rules.

The matching name for a variable is the variable name itself.

The matching name for a widget is the widget

: .) widget name matching name
name itself, if the name does not contain a
double underscore ('_'), otherwise the |button ok button_ok
matching name is the part of the widget name |toggle_ button toggle

before the double underscore. This allow to |check button 1 check button 1
differentiate widget names for widgets that are T - T B
to be connected to the same variable.

Each widget having a matching name equal to a Table 2: Examples of matching names
variable matching name is connected to that

variable.

radio_button_ 2 radio_button

A widget can be connected to one variable. A variable can be connected to one or more
widgets.

2.3. Matching namespaces

The name matching process of AVC works on two sides. One is the application program where
AVC search for matching names of variables. The other is the GUI where AVC search for
matching names of widgets. The matching process can be performed any number of times and
at any moment during application run time by a simple call to the proper AVC method
(“avc_init” or “avc_connect”). For each call, the name search in the application is bounded to
the attributes of the python object calling the AVC method. While the name search in the
widgets is bounded to a widgets subtree, if the subtree root widget is specified in the call. If no
root widget is specified, the whole GUI widget tree is searched. In other words, the search
namespace of the application variables is the scope (the directly accessible namespace or the
set of local symbols) of the object calling the AVC method. See the “countdown” example.

2.4. connected objects

Each python object calling one of the connecting methods of AVC (“avc_init” or “avc_connect”)
is a “connected” object. All connected objects must be instances of classes derived from the
AVC class. Let suppose that the class name is "myConnectedClass", the class definition
statement will be

class myConnectedClass(AVC):

The AVC class is derived from the builtin object class that is the base of all new style classes
introduced with python 2.2. So, also the derived class becomes a new style class.

2.5. static and dynamic connections
Any widget-variable connection created by AVC is dynamic, in the sense that it can be created

or deleted at any moment during the application run time. The simplest usage of AVC as
outlined in 1.3 uses the connections in a “static” mode: the connections are setup only one

Fabrizio Pollastri 11/115

AVC, Application View Controller User Manual

time at the application init (call to avc_init) and they stay alive and unchanged until application
termination. In a more flexible usage, AVC creates some connections at application init time,
then during run time new GUIs or parts of GUlI come up as connected objects and when the
application destroy some part of this GUIs, the corresponding connections are automatically
deleted. When the application deletes a widget that belongs to a connection, AVC automatically
removes it from the connection and if the connection has no more widgets, the connection is
also removed (see "countdown" example). An example of dynamic connection is a dialog
window that cames up at some execution time. The application can connect any widget in the
dialog that is referenced by some application variable by the following call:
the app.avc connect(new dialog window) .

2.6. uniform separation between application logic and
GUI

AVC allows to structure the application with a program logic separated from GUI statements for
all supported toolkits. For example, program logic can be put in one class and GUI management
in another class (see "counter" example).

2.7. AVC initialization

AVC start its job just after it is initialized. AVC initialization can take place in the application
after the creation of the GUI and after the instantiation of all variables to be connected. AVC
initialization is done by calling the instance method avc_init. Let suppose that the application
instance name is "the_app", the AVC init statement will be

the app.avc_init()

When the value of a connected variable is changed, the values displayed by the widgets
connected to it are updated by AVC in one of two allowed modes: immediate or periodic. Mode
selection is done at AVC initialization specifying the "view_period" argument. If the argument is
omitted, like in the app.avc_init(), it is assigned a default value of 0.1 seconds, selecting a
periodic views update with that period. If the argument is assigned a value, like in
the app.avc_init(view period=0.2), views will be updated every "view_period" seconds. If the
argument is assigned to zero or to "None" value, like in the app.avc _init(view period=0),
views will be updated immediately after each change of the variable value.

2.8. Connecting widgets with variables

Two AVC methods can be called to perform widgets-variables connections: “avc_init” and
“avc_connect”. As detailed in 2.7, any application using AVC must call the “avc_init” method at
init time. This call is normally performed by the application object that implements the “main”
function of the application. avc_init initializes all the internal logic of AVC and makes any
required connection of the “main” object between its attributes and the whole widget tree of
the GUI. In many cases this is enough, so no more AVC calls are required. If other application
objects needs to perform connections, they must call the “avc_connect” method. This method
makes any required connection of the calling object between its attributes and the widget tree
whose root widget is given as argument. Let suppose that the object name is “objectl”, the call
statement will be

objectl.avc connect(tree root widget)

Fabrizio Pollastri 12/115

AVC, Application View Controller User Manual

If the argument is omitted, the widget tree defaults to the whole GUI widget tree. The following
rules apply to avc_connect operations: widget trees can overlap, a connected widget can not
be reconnected in another way. See "countdown" example.

2.9. Normal abstract widget collection

All supported widgets are divided into two groups: normal and advanced. Normal widgets
embed simple data that can be connected to a basic python type, i.e. the button widget can be
connected to a boolean variable. Advanced widgets embed complex data that needs to be
connected to a more complex python type.

The normal real widgets of the supported toolkits are mapped to the following set of abstract
widgets. The detailed python data corresponding at each abstract widget is given.

Button

The memoryless press button, its connected variable must be a boolean. In normal state
(button not pressed) the variable is "False", in pressed state (mouse pointer over button and
mouse button 1 pressed) the variable is "True".

Names for button widget in supported toolkits: GTK+ "Button" and Qt4 "QPushButton" with
toggle attribute off, Tk “Button”, wxWidgets “Button”, Swing “JButton”.

Check button

The behavior of the check button widget is the same of the toggle button widget. See toggle
button.

Names for check button widget in supported toolkits: GTK + "CheckButton", Qt4 "QCheckBox",
Tk “Checkbutton”, wxWidgets “CheckBox”, Swing “JCheckBox".

Combo box

The combo box, an item selector. The connected variable must be of type integer, its value is
the index of the selected item. When no item is selected index is -1.

Names for combo box widget in supported toolkits: GTK2+ “ComboBox”, GTK3+
“ComboBoxText”, Qt4 "QComboBox", not available in Tk, wxWidgets “Choice” “ComboBox”,
Swing “JComboBox”.

Entry

The text entry, its connected variable can be integer, float or string. Text input must conform to
the type of the connected variable. If the connected variable is of type string, its value is
copied to the entry widget "as is", if type is integer or float, the value is converted to string
before copy.

Names for text entry widget in supported toolkits: GTK+ "Entry", Qt4 "QLineEdit", Tk “Entry”,
wxWidgets “TextCtrl”, Swing “JTextField”.

Label

The text label, its connected variable can be boolean, integer, float, string, list, tuple or object.
If the label is created with a default text, AVC tests it against the connected variable to be a
valid python formatting string. If the test is successful, the default text is saved by AVC and
used to format the label text updates when the connected variable value changes. If the
connected variable is a generic python object, the formatting string is applied to the dictionary
of the object. If the test is not successful, the label text updates are rendered by the standard
python string representation applying the str function to the connected variable. For further
details, see the “label example”.

Names for text entry widget in supported toolkits: GTK+ “Label”, Qt4 “QLabel”, Tk “Label”,

Fabrizio Pollastri 13/115

AVC, Application View Controller User Manual

wxWidgets “StaticText”, Swing “JLabel".

Progress bar

The progress bar, its connected variable must be a float. If the value assigned to the variable is
negative, the progress bar is pulsed (display effect: a short colored segment shuttling along the
progress bar). If the value assigned to the variable is in the range 0.0 - 1.0, the progress bar is
extended for the proportional amount (0.0 — 0%, 1.0 — 100%).

Names for progress bar widget in supported toolkits: GTK+ “ProgressBar”, Qt4 “QProgressBar”,
Tk not supported, wxWidgets “Gauge”, Swing “JProgressBar”.

Radio button

The radio buttons come always in groups of two or more radio buttons. Each radio button
behaves like a check button, but only one radio button at a time can be checked in each group.
A variable of type integer can be connected to each group of radio buttons, its value is the
index of the checked radio button in the group.

Names for text entry widget in supported toolkits: GTK+ “RadioButton”, Qt4 “QRadioButton”, Tk
“Radiobutton”, wxWidgets “RadioBox”, Swing “JRadioButton”.

Slider

The slider, its connected variable can be integer or float. The GTK+ "HScale" and "VScale"
support both types. On the contrary, Qt4 supports only integers with "QSlider" widget. Also
Swing with “Jslider” support only integers. Remember that in python floats are always doubles.

Names for text entry widget in supported toolkits: GTK2+ “Hscale” and “Vscale”, GTK3+
“Scale”, Qt4 “QSlider”, Tk “Slider”, wxWidgets “Slider”, Swing “JSlider”.

Spin button

The spin button, its connected variable can be integer or float. The GTK+ "SpinButton" support
both types. On the contrary, Qt4 differentiate integer or float support with two widgets:
"SpinBox" and "DoubleSpinBox". Remember that in python floats are always doubles.

Names for spin button widget in supported toolkits: GTK+ "SpinButton", Qt4 "QSpinBox" for
integer and "QDoubleSpinBox" for float, Tk “Spinbox”, wxWidgets “SpinCtrl”, Swing “JSpinner”.

Status bar
The status bar, its connected variable is a string.

Names for text view/edit widget in supported toolkits: GTK+ "StatusBar", Qt4 and Tk not
supported, wxWidgets “StatusBar”.

Text view/edit
The text view/edit, its connected variable is a string.

Names for text view/edit widget in supported toolkits: GTK+ "TextView", Qt4 "QtextEdit", Tk
“Text”, wxWidgets “TextCtrl”, Swing “JTextArea”.

Toggle button

The toggle button, a button with memory, its connected variable must be a boolean. Each time
the button is pressed, it changes its state: from on to off or viceversa. In off state the variable
is "False", in on state the variable is "True".

Names for toggle button widget in supported toolkits: GTK+ "ToggleButton", Qt4 "PushButton"
with toggle attribute on, Tk “Togglebutton”, wxWidgets “ToggleButton”, Swing “JToggleButton”.

Fabrizio Pollastri 14/115

AVC, Application View Controller User Manual

2.10. Advanced abstract widget collection

The advanced real widgets of the supported toolkits are mapped to the following set of abstract
widgets. The detailed python data corresponding at each abstract widget is given. The widget
graphics show belove depends on the toolkit used. The example images as taken from GTK
widgets.

Calendar
The calendar, this widget the current date with a calendar graphic. The date can be changed by
interacting with the widget graphic.

A calendar widget displaying some date The connected python variable

sun MMon Tue Wed Thu Fri Sakb

[2000,1,1]

In the example above, the calendar widget displays the date of January 1, 2000. The connected
variable is a list with the format [year, month, day]. Month and day numbers starts from 1.

Color selection

The color selection, this widget a graphic showing the current selected color. The color can be
changed by interacting with the widget graphic.

A color selection widget displaying a color The connected python variable

[0.249989,0.499992,1.000000,1.000000]

In the example above, the widget displays the current color in four different modes.
Graphically, the color triangle on the left. By Hue, saturation and value components. By red,
green and blue components. The value of each components of this last representation is given
in decimal and hexadecimal numbers. The connected variable is a list with the format [red,
green, blue, alphal. The value of each components span the range 0.0 - 1.0. The corresponding
decimal range in widget representation is 0 - 255. The corresponding hexadecimal range in
widget representation is 00 - ff . The alpha component, the color transparency, is assumed to
be 1.0 that means a color completely opaque.

Fabrizio Pollastri 15/115

AVC, Application View Controller User Manual

List view

The list view, this widget can display data as a 2D table of one or more columns, the columns
can have an optional header. All items in one column may have the same type. Different
columns can have different types. At present, only textual data can by displayed: no icons, no
check boxes, etc. Let explain the connected python variable with an example.

A list view widget displaying some data The connected python variable

coll int | col2 str

3 three {'head':['coll int', 'col2 str'l, \
1 one 'body':[[1,'one'],[2,'two"'],[3, 'three']l]}
2 two

In the above example, the list view displays a data table with two columns and three rows plus
an header. The connected python variable is contained into a dictionary with two keys: “head”
and “body”. The value of the key “head” controls the header of the list view. Its value type
must be a list of strings, each string appears into the head of a column. To remove the header
in the widget, remove the “head” key/value pair from the dictionary. The value of the key
“body” controls the data displayed in the table. Its must be a list of row data, where each row is
a list of column values.

Names for list view widget in supported toolkits: GTK+ “TreeView"”, Qt4 “QTreeWidget”, Tk not
supported, wxWidgets “ListCtrl”, Swing “JTable”.

Note: wxWidgets “ListCtrl”works with property “style” set to "report”.

Tree view

The tree view, this widget can display a hierarchical data tree, it can have an optional header.
At present, only textual data can be diplayed: no icons, no check boxes, etc. Let explain the
connected python variable with an example.

A tree view widget displaying some data The connected python variable

coll int | col? str

- 1 one

l1lione one

{'head':['coll int', 'col2 str'l, \

12 {one two 'body':{'1"':[1,'0ne'],'2":[2, "two"'], \
'1.1':[11,'one one'],'1.2':[12, 'one two'],\
- 2 two '2.1':[21,'two one'],'2.2"':[22, 'two two']}}

21 itwo one

22 itwo two

In the above example, the tree view displays two root rows, rows 1 and 2. Each root row has
two children rows, rows 11 and 12 for root row 1, rows 21 and 22 for root rows 2. The whole
tree has 6 rows and two columns with an header. The connected python variable is contained
into a dictionary with two keys: “head” and “body”. The value of the key “head” controls the
header of the tree view. Its value type must be a list of strings, each string appears into the
head of a column. To remove the header in the widget, remove the “head” key/value pair from

Fabrizio Pollastri 16/115

AVC, Application View Controller User Manual

the dictionary. The value of the key “body” controls the data displayed in the tree. Its must be a
dictionary of row data. The row value is a list of column values. The key of each row is the path
of the row in the tree, referred only to the visual current position of the row respect to the other
rows. A row path is represented as a string with one or more integers separated by dots. Root
rows paths have only one integer, starting from 1 for the topmost row and increasing by one at
each root row going toward bottom. First level children have two integers. The first is the
parent path, the second is the child top-down order, starting from 1 for the topmost child and
increasing by one at each child of the same parent going toward bottom. Path of deeper rows in
a tree is built applying recursively the above rules.

Names for tree view widget in supported toolkits: GTK+ “TreeView”, Qt4 “QTreeWidget”, Tk not
supported, wxWidgets “TreeCtrl”, Swing “JTree”.

Note: wxWidgets “TreeCtrl” and Swing “JTree”do not support columns and headers.

2.11. connection update trigger events

On the application side there is only one event triggering the update of the connected widgets,
the assignment of a new value to the connected variable. On the contrary, from the GUI side,
several events can trigger the update of a new value in the connected variable and in the other
connected widgets. The following table specifies for each widget which GUI events trigger the

update.

Table 3: GUI events triggering connection update

AVC real widgets events by supported toolkits
abstract GTK2+ Qt4 . .
widget type GTK3+ Qt5 Tk wxWidgets Swing
Button MLB press MLB press MLB press MLB press MLB press
MLB release MLB release MLB release MLB release MLB release
MLB press
Calendar MLB press MLB release - MLB release -
. MLB press MLB release on MLB release on MLB release
Color Selection Label edit end OK button) OK button Label edit end
Check Button MLB release MLB release MLB press MLB release MLB release
MLB release MLB release MLB release MLB release
Combo Box Arrows+Enter | Arrows+Enter NA Arrows+Enter Arrows
Entry Enter Enter Enter Key press Key release
Label - - - - -
Row deleted Layout changed
i P ow aelete Data changed i ;
List View Row changed e er data NA Label edit end | Label edit end
changed
Progress Bar NE NE NA NE NE
. MLB release MLB release MLB release
Radio Button Arrow press Arrow press MLB press Arrow press MLB release
Slider Drag Drag Drag Drag end Drag
MLB press MLB press
. MLB press MLB release MLB press
Spin Button MRB press MRB press
Enter Key press Enter Enter Enter
Status Bar NE NE NA NE NE
Text View Key press Key press Enter Key press Key press
Toggle Button MLB release MLB release MLB press MLB release MLB release

Fabrizio Pollastri

17/115

AVC, Application View Controller User Manual

Row deletad Layout changed

; ow delete Data changed i ;

Tree View Row changed e dor s NA Label edit end | Label edit end
changed

Notes

Arrows: up and down arrow keys.

Drag: mouse left button pressed while moving.
Enter: the enter key.

Key: any printable key.

Label edit end: enter key pressed after label editing.
MLB: mouse left button.

MRB: mouse right button.

NA: widget not available.

NE : display only widget, no input event.

2 . 12 « Caveat

Below, there is a list of things to pay attention to have a good experience with AVC. They are in
part limitations chosen by design to keep AVC as simple as possible, in part limitations imposed
by the python language. They may become development targets in the future.

2 . 12 . 1 = General caveat

The attributes exploration goes deep one level, it is not recursive on objects. This means that
only attributes of the current class are considered for matching. If an attribute of the current
object class is an object containing other attributes, these are not considered for matching.

Several core operation of AVC must be executed atomically, to avoid the burden of mutually
exclusive execution provisions, AVC cannot be used together with multiple thread of control.

When the connected variable is a mutable sequence (list or dictionary), the assignment to the
variable with subscripts do not trigger the value update into the connected widgets. So, assign
the connected variable as a whole without any subscript.

For efficient programming, use small (in memory footprint sense) connected variables: avoid
long lists or big dictionaries.

At present, no persistence of connected variables is implemented. At application termination,
nothing is saved about the status of the connected variables.

The update of tree view widgets rewrites completely the displayed tree, so the
expanded/collapsed status of each tree node is lost.

2 . 1 2 . 2 = Widget toolkit specific caveat

AVC for Swing do not implement widget removal: it seems that Swing do not have a widget
destroy signal to listen.

GTK2+ glade interface designer rename automatically different widget with the same name by
appending a number.

Fabrizio Pollastri 18/115

AVC, Application View Controller User Manual

2.13. Testing and debugging

AVC can produce a printout of its activity that can be useful for testing and debug purposes.
The verbosity level of the printout can be selected from 0 (minimum) to 4 (maximum). Let
suppose that the program to test is “myprogram.py”, then to produce the printout with the
maximum verbosity the following command is required.

myprogram.py --avc-verbosity 4

The content of the each verbosity level is the following.
e level 0: nothing printed, the default.

e level 1: header with AVC version, widget toolkit type and version, program name,
verbosity level, connection update mode; connection list with name, variable type,
initial value, removed connections.

e level 2: as level 1 plus the widgets and the change handlers list of each connection, the
removed widgets.

e level 3: as level 2 plus the details of widgets in connections lists.
e level 4: as level 3 plus full widget tree for each scansion.

e level 5: as level 4 plus full printout of internal structures (cogets, connections, widgets).

2 . 13 . 1 » Testing printout for example gtk3 counter.py

The following example shows the output produced by running the example “gtk3_counter.py”
with verbosity at level 4. Similar outputs are given for the other widget toolkits.

./9tk3_counter.py --avc-verbosity 4
AVC 0.10.0 - Activity Report
widget toolkit binding: GTK3 v3.10.8
program: ./gtk3 counter.py
verbosity: 4
connection update mode: periodic, period=0.1 sec
widget tree scansion from top level [<Window object at 0x7f5289538870 (GtkWindow at
0x1bla360)>]
skip unsupported widget Window, "root window"
skip unsupported widget Box, "GtkBox"
creating coget "counter" in <avc.avccore.Coget object at 0x7f52837b0el0>
creating connection "counter" in < main_.ExampleMain object at 0x7f528c64c610>
type: <type 'int'>
initial value: 0
add widget Label,"counter" to connection "counter"
valid format string: "%d"
creating coget "high speed" in <avc.avccore.Coget object at 0x7f52837b0e50>
creating connection "high speed" in < main__ .ExampleMain object at 0x7f528c64c610>
type: <type 'bool'>
initial value: False
connected handler "high speed changed"
add widget CheckButton,"high speed" to connection "high speed"
skip unmatched widget Label, "GtkLabel"
removing widget Label from connection "counter" of < main_.ExampleMain object at
0x71528c64c610>

Fabrizio Pollastri 19/115

AVC, Application View Controller User Manual

removing connection "counter" from < main .ExampleMain object at 0x7f528c64c610>
deleting coget "counter" <avc.avccore.Coget object at 0x7f52837b0el0>

removing widget CheckButton from connection "high speed" of < main_.ExampleMain
object at 0x7f528c64c610>

removing connection "high speed" from < main_.ExampleMain object at 0x7f528c64c610>
deleting coget "high speed" <avc.avccore.Coget object at 0x7f52837b0e50>

In the “widget tree scansion” all the widgets of the GUI are analyzed. In fact, the root widgets of
the searched tree are the top level windows. Each widget can be skipped (ignored) or added to
a connection. A widget is skipped because it is of type not supported AVC or it has a name not
matching any variable of the application or it is already connected. When a name match is
found and the related connection do not exists, the message “ creating connection ..."” appears
with the name of the connection and the object in which resides the connected variable. The
type and the initial value of the variable is also displayed. A widget is added to a connection
because it name matches some application variable. For each added widget, its class type and
its name are printed.

Things to be noticed. The connection “counter” has a label widget that was preloaded with a
valid formatting string ("%d"). The connection “high_speed” has a check button
widget and it has the change handler “high_speed_changed”.

When the main window is closed, all the contained widgets are deleted, so for each deleted
widget that is also connected a remove message appears. When a connection has no more
widgets, it is also removed and a remove message appears.

Fabrizio Pollastri 20/115

AVC, Application View Controller User Manual

3. GTK2+ reference

This is the part of the user manual specific to the GTK2+ widgets toolkit.

3.1. Module dependencies

AVC GTK2+ depends on PyGTK [9] the python wrapper for GTK2+ libraries. AVC GTK2+ imports
the following modules from PyGTK.

import gtk
import gobject

3.2. Widget naming

Both Glade, the interface designer, and GTK2+ allow duplicated naming of widgets.

3.3. status bar widget

AVC uses the GTK2+ status bar widget as a simple output label. Only context #1 with one or
none message on status bar stack is used.

3.4. Interface designer

AVC is fully compatible with Glade, the design tool for GTK2+. Glade produces an interface
description that is saved as a specific xml format (.glade).GTK2+ and GTK3+ reference

This is the part of the user manual specific to the GTK+ widgets toolkit.

Fabrizio Pollastri 21/115

AVC, Application View Controller User Manual

4. GTK3+ reference

This is the part of the user manual specific to the GTK3+ widgets toolkit.

4.1. Module dependencies

AVC GTK3+ depends on PyGObject [10] the python wrapper for GTK3+ libraries. AVC GTK3+
imports the following modules from PyGTK.

import gi.repository.GObject as GObject
import gi.repository.Gtk as Gtk

4.2. Widget naming

Both Glade, the interface designer, and GTK3+ allow duplicated naming of widgets.

4.3. Interface designer

AVC is fully compatible with Glade, the design tool for GTK3+. Glade produces an interface
description that is saved as a specific xml format (.ui).

Fabrizio Pollastri 22/115

AVC, Application View Controller User Manual

5. Qt4 and Qt5 reference

This is the part of the user manual specific to Qt4 [3] widgets toolkit.

5.1. Module dependencies

AVC Qt4 depends on PyQt v4 [11] the python bindings for Qt v4 application framework. AVC
Qt4 imports the following modules from PyQt.

import PyQt4.Qt as qt

5.2. Widget naming

Qt4 Designer and Qt4 do not allow duplicated naming of widgets. So use the 'double
underscore' mechanism to differentiate widgets names.

5.3. Application GUI class

The application objects that need to interact with Qt4 GUI, must be instantiated from an
application class that is derived from the QApplication class. Let suppose that the application
GUI class name is "theAppGUI", the application class statement will be

class theAppGUI(QApplication):

5.4. Interface designer

AVC is fully compatible with Qt4 Designer, the design tool for Qt4. Qt4 Designer produces an
interface description that is saved as a specific xml format (.ui).

Fabrizio Pollastri 23/115

AVC, Application View Controller User Manual

6. Tk reference

This is the part of the user manual specific to Tk [4] widgets toolkit.

6.1. Module dependencies

AVC Tk depends on Tkinter [12] the python bindings for Tk application framework. Tkinter is
part of the standard python library. AVC Tk imports the following module from python standard
library.

import Tkinter

6.2. Widget naming

The Tk toolkit has a specific naming scheme for its widgets. Widget name is generally the
concatenation of its parent's name followed by a period (unless the parent is the root window .
) and a string containing no periods, e. g. “.baseframe.buttonl”. For this reason, the complete
name of each widget is unique. AVC takes as widget name not the complete Tk name but only
the part after the rightmost dot. For example a widget with the complete Tk name
“.baseframe.buttonl” has the AVC name “buttonl”.

6.3. Interface designer

AVC supports the 'Visual Tcl' interface design tool for Tk. Visual Tcl produces an interface
description that is saved as tcl script.

Fabrizio Pollastri 24/115

AVC, Application View Controller User Manual

7. wxWidgets reference

This is the part of the user manual specific to wxWidgets [5] widgets toolkit.

7.1. Module dependencies

AVC wxWidgets depends on wxPython [13] the python bindings for wxWidgets application
framework. AVC wxWidgets imports the following module from python standard library.

import wx

7.2. Widget naming

Both wxGlade, the interface designer, and wxWidgets allow duplicated naming of widgets.

7.3. Application GUI class

The application objects that need to interact with wxWidgets GUI, must be instantiated (in the
simplest form) from an application class that is derived from the PySimpleApp class. Let suppose
that the application GUI class name is "theAppGUI", the application class statement will be

class theAppGUI(PySimpleApp):

7 .4. Interface designer

AVC supports the 'wxGlade' interface design tool for wxWidgets and all other design tools
producing an interface description that is saved in the native xml format ('xrc') of wxWidgets.

Fabrizio Pollastri 25/115

AVC, Application View Controller User Manual

8. Swing reference

This is the part of the user manual specific to Swing [6] widgets toolkit.

8.1. Module dependencies

AVC Swing depends on jython Swing modules [8], the jython bindings for java Swing
application framework. AVC Swing imports the following module from jython standard library.

from java import awt
from javax import swing

8.2. Widget naming

Swing allows duplicated naming of widgets.

Fabrizio Pollastri 26/115

AVC, Application View Controller User Manual

9. GTK2+ examples

9.1. Spin button example

This simple example shows how AVC can manage data exchange from widget to widget
without any specific code in the application. The program creates a window with two widgets: a
spin button and a label. When the value in the spin button is changed by clicking on up or down
arrows or by entering it with the keyboard, the new value is displayed into the label.

|'-- AVC GTK spin button example BEE

e E

9 . 1 . 1 » Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

import gtk # gimp tool kit bindings
import gtk.glade # glade bindings

from avc import * # AVC

GLADE XML = 'gtk spinbutton.glade’ # GUI glade descriptor

class Example(AVC):

A spin button whose value is replicated into a label

def init (self):

create GUI
self.glade = gtk.glade.XML(GLADE XML)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

the variable holding the spin button value
self.spin value = 0

def on destroy(self,window):
"Terminate program at window destroy"
gtk.main_quit()

MAIN

example = Example()

instantiate the application

Fabrizio Pollastri 27/115

AVC, Application View Controller User Manual

example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit
END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_spinbutton.glade’.
The key points of the example regarding AVC are the following.

e During Glade editing, the same name 'spin_value' was given to the spin button and to
the label.

e The AVC package is imported at program begin (from avc import *).
e The application class is derived from the AVC class (class Example(AVC):).

e A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

e The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc_init()).

Example files in directory 'examples' of distribution: program 'gtk spinbutton.py' , Glade
descriptor 'gtk_spinbutton.glade’.

9.2. calendar example

This example shows the graphic rendering of the calendar widget displaying the default date of
January 1, 2000.

Control Type Control Value Widget
¢ January > <2000*
List or Tuple
[yyyy.mmdd] (2000,1,1) = = a0
(vyyy,mm,dd) 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

The connected variable can be a list or a tuple with the format yyyy, mm, dd: four digit year,
two digit month, two digit day. Month and day numbers start from 1.

9 . 2 . 1 » Python source

#!/usr/bin/python

.copyright : (c) 2013 Fabrizio Pollastri.

.license : GNU General Public License v3

import gtk # gimp tool kit bindings
import gtk.glade # glade bindings

Fabrizio Pollastri 28/115

AVC, Application View Controller User Manual

from avc import * # AVC

GLADE XML = 'gtk calendar.glade' # GUI glade descriptor

class Example(AVC):

Calendar widget connected to label widget (GTK)

def init (self):

create GUI
self.glade = gtk.glade.XML(GLADE XML)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

all types of connected variables
self.calendar value = (2000,1,1)

def on_destroy(self,window):
"Terminate program at window destroy"
gtk.main quit()

#i## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit
END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_calendar.glade’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the GTK event loop is entered the calendar date is set to the initial value of the
connected variable: January 1, 2000.

Example files in directory ‘'examples' of distribution: program 'gtk calendar.py' , Glade
descriptor 'gtk_calendar.glade'.

9.3. color selection example

This example shows the graphic rendering of the color selection widget displaying the default
color of 0.25 red, 0.5 green, 1.0 blue, 1.0 alpha.

Fabrizio Pollastri 29/115

AVC, Application View Controller User Manual

" [l] AVC GTK color selection example

The connected variable can be a list or a tuple with the format red, green, blue, alpha, where

each color component spans the value range 0.0 - 1.0 . Alpha is the color opacity: 1.0 is the
maximun opacity.

9 . 3 . 1 = Python source

#!/usr/bin/python

.copyright : (c) 2013 Fabrizio Pollastri.

.license : GNU General Public License v3

import gtk # gimp tool kit bindings

import gtk.glade # glade bindings

from avc import * # AVC

GLADE XML = 'gtk colorselection.glade' # GUI glade descriptor

class Example(AVC):

Color selection widget connected to label widget (GTK)

def init (self):

create GUI
self.glade = gtk.glade.XML(GLADE XML)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

all types of connected variables
self.color value = (0.25,0.50,1.,1.)

def on_destroy(self,window):
"Terminate program at window destroy"
gtk.main_quit()

#it## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

Fabrizio Pollastri 30/115

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Glade and saved to the file
‘gtk_colorselection.glade’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the GTK event loop is entered the color is set to the initial value of the connected
variable: 0.25,0.5,1.0,1.0 .

Example files in directory 'examples' of distribution: program 'gtk colorselection.py' , Glade
descriptor 'gtk_colorselection.glade'.

9.4. Counter example

This example shows how AVC can manage data input from a check button widget to the
application and from the application to a label widget without any specific code in the
application. The program creates a window with two widgets: a check button and a label. The
label displays the value of an integer counter. The check button controls the increment speed
of the counter. Initially, it is unchecked meaning that the increment speed of the counter is 2
units per second. When the user checks the check button the increment speed grows to 10
units per seconds and returns to the initial value (2) when the check button is unchecked again.

|'-- AVC GTK counter example [=| 0%

1866

9 . 4 . 1 » Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

import gobject #- -

import gtk #- gimp tool kit bindings

import gtk.glade # glade bindings

from avc import * # AVC

GLADE XML = 'gtk counter.glade' # GUI glade descriptor

LOW SPEED = 500 #--

HIGH SPEED = 100 #- low and high speed period (ms)

class ExampleGUI:
"Counter GUI creation"

def init (self):

create GUI
glade = gtk.glade.XML(GLADE XML)

Fabrizio Pollastri 31/115

AVC, Application View Controller User Manual

autoconnect GUI signal handlers
glade.signal autoconnect(self)

def timer(self,period, function):
"Start a GTK timer calling back 'function' every 'period' seconds."
self.timerl = gobject.timeout add(period, function)

def on_destroy(iself,window):
"Terminate program at window destroy"
gtk.main_quit()

class ExampleMain(AVC):
A counter displayed in a Label widget whose count speed can be
accelerated by checking a check box.

def init (self,qui):

save GUI
self.gui = gui

the counter variable and its speed status
self.counter = 0
self.high speed = False

start incrementer timer
self.qui.timer(LOW_SPEED,self.incrementer)

def incrementer(self):
Counter incrementer: increment period = LOW SPEED, if high speed is False,

increment period = HIGH SPEED otherwise. Return False to destroy previous
timer.

self.counter +=1
if self.high speed:

period = HIGH SPEED
else:

period = LOW_SPEED
self.qui.timer(period,self.incrementer)
return False

def high speed changed(self,value):
"Notify change of counting speed to terminal"
if value:
print 'counting speed changed to high'
else:
print 'counting speed changed to low'

#i## MAIN

example gui = ExampleGUI() # create the application GUI
example = ExampleMain(example gui) # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit

Fabrizio Pollastri 32/115

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_counter.glade’.
The key points of the example regarding AVC are the following.

e During Glade editing, the name ‘'counter' was given to the label and the name
'high_speed' was given to the check button.

e The AVC package is imported at program begin (from avc import *).

e The application class is derived from the AVC class (class Example(AVC):).

e A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

e A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment speed
(self.high speed = False).

e The avc_ init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable.

Example files in directory 'examples' of distribution: program 'gtk_counter.py', Glade descriptor
'‘gtk_counter.glade'.

9.5. Label example

This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

|'- AVC GTK label example
Control type Format string Label with format Label without format
boolean %d 1 True
float =h=%f</b= 1.000000 1.0
integer <b=%d</b= 1 1
list <h=>%d,%d%d 1,2,3 [1,2, 3]
string =hb>%s= abc abe
tuple <b=%d,%d %d 1,2,3 (1.2, 3)
object
with attributes %(x)d % (yld</b=> 1,2 <__main__.Obj instance at Oxb732alec>
®=1, y=2

9 . 5 . 1 » Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri

.license : GNU General Public License v3
import gtk # gimp tool kit bindings
import gtk.glade # glade bindings

Fabrizio Pollastri 33/115

AVC, Application View Controller User Manual

from avc import * # AVC

GLADE XML = 'gtk label.glade' # GUI glade descriptor

class Example(AVC):

Showcase of formatting capabilities for the label widget

def init (self):

create GUI
self.glade = gtk.glade.XML(GLADE XML)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

all types of connected variables
self.bool value = True

self.float value = 1.0
self.int value =1
self.list value = [1,2,3]

self.str value = 'abc'
self.tuple value = (1,2,3)
class 0Obj:

"A generic object with 2 attributes x,y"
def _ init (self):
self.x =1
self.y = 2
self.obj value = 0bj()

def on_destroy(self,window):
"Terminate program at window destroy"
gtk.main_quit()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit
#4444 END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_label.glade’.
Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e For each control type (for each row) the two label widgets, one in the column “Label
with format” and one in the column “Label without format”, are connected to the
variable of the corresponding type. For example, in row “boolean”, both label widgets
are called “bool_value”, so they connect to the variable self.bool value .

e When the GTK event loop is entered both columns are set to display the initial values of
the connected variables. For example, in row “integer”, both labels are set to display
the integer value 1.

e The differences of representation between the column “Label with format” and the
column “Label without format” reflect the different printout results coming from the
formatting capabilities of the label widget and from str, the generic textual rendering

Fabrizio Pollastri 34/115

AVC, Application View Controller User Manual
function of python.

Example files in directory 'examples' of distribution: program 'gtk label.py' , Glade descriptor
'gtk_label.glade’.

9.6. showcase example

This example shows a table of almost all widget/variable type combinations supported by AVC.
The program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

e Row 1: memoryless button with boolean variable, pressed = True, unpressed = False.

e Row 2: buttons with memory, toggle and check buttons, pressed = True, unpressed =
False.

e Row 3: mutually exclusive choices widgets, radio buttons numbered from 0 to 2 and a

combo box with 3 items, index variable = number of checked radio button and selected

item of combo box.

Row 4: integer input/output widgets, spin button, entry and slider.

Row 5: float input/output widgets, spin button, entry and slider.

Row 6: string input/output widget, entry.

Row 7: string input/output widget, text view/edit.

Row 8: status messages, status bar.

The text label widget is used in all output modes for the column of the connected variable

values. The program increment the value of each connected variable looping top-bottom at

three rows per seconds. The user can also change the values in the connected variables

interacting with the widgets.

[AVC GITK showcase example
Control Type Widgets Control value
| button | False
boolean
|togg|e buttcn| 1 check butten True
radio buttons combe box
index) choice 0 5
(integer)) choice 1 choice 2 =
g
® choice 2
spin button entry slider
integer [= [15 5
5 5 S
L Bb o
[= -- | 25
float [25 [If[25 | 2 2.50
entry
string | | AALAL
text viewfedit ~line of text, line of text, line of text
line of text, line of text, line of t[+] line of text, line of text, line of text
strin line of text, line of text, line of t| = | line of text, line of text, line of text
e line of text, line of text, line of t | line of text, line of text, line of text
line of text, line of text, line of =] line of text, line of text, line of text
(4] D]
. status bar
string status message
status message

9 . 6 . 1 » Python source

#!/usr/bin/python

Fabrizio Pollastri 35/115

AVC, Application View Controller

User Manual

.copyright
.license

import gobject
import gtk
import gtk.glade

from avc import *

GLADE XML = 'gtk showcase.glade'
INCREMENTER PERIOD = 333

class Example(AVC):

def init (self):

create GUI

the control variables
self.booleanl False
self.boolean2 False
self.radio = 0
self.integer = 0
self.float = 0.0
self.string = "'
self.textview =
self.status = '

start variables incrementer
increment = self.incrementer()

def incrementer(self):

while True:

yield True

yield True

if self.radio >= 2:
self.radio = 0

else:
self.radio += 1
yield True

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

(c) 2006 Fabrizio Pollastri
: GNU General Public License v3

#--
#- gimp tool kit bindings
glade bindings

AVC

GUI glade descriptor
ms

"A table of all supported widget/control type combinations"

self.glade = gtk.glade.XML(GLADE XML)

gobject.timeout add(INCREMENTER PERIOD,increment.next)

self.booleanl = not self.booleanl

self.boolean2 = not self.boolean2

Booleans are toggled, radio button index is rotated from first to last,
integer is incremented by 1, float by 0.5, string is appended a char
until maxlen when string is cleared, text view/edit is appended a line
of text until maxlen when it is cleared. Status bar message is toggled.
Return True to keep timer alive.

Fabrizio Pollastri

36/115

AVC, Application View Controller User Manual

self.integer +=1
yield True

self.float += 0.5
yield True

if len(self.string) >= 10:
self.string = "'

else:
self.string += 'A'
yield True

if len(self.textview) >= 200:

self.textview = ''
else:

self.textview += 'line of text, line of text, line of text\n'
yield True

if not self.status:

self.status = 'status message'
else:

self.status = "'
yield True

def on_destroy(self,window):
"Terminate program at window destroy"
gtk.main quit()

MAIN
instantiate the application

connect widgets with variables
run GTK event loop until quit

example = Example()
example.avc_init()
gtk.main()

END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_showcase.glade’.
The key points of the example regarding AVC are the following.

e During Glade editing, the following names were given to the widgets.

Row widget name

1 button booleanl button
output value label booleanl var
togglebutton boolean2_togglebutton
2 |checkbutton boolean2 checkbutton
output value label boolean2 var

radiobutton0 radio__radiobutton0
radiobuttonl radio__radiobuttonl

3 radiobutton2 radio_radiobutton2
combobox radio__combobox
output value label radio_var
spinbutton integer__spinbutton

4 entry integer__entry
slider integer__slider
output value label integer__var

5 spinbutton float__spinbutton
entry float__entry

Fabrizio Pollastri

37/115

AVC, Application View Controller

e The AVC package is imported at program begin (from avc import *).

User Manual

slider float slider
output value label float var
6 entry string__entry
output value label string__var
textview textview textview
7 :
output value label textview var
8 statusbar status statusbar
output value label status_var

e The application class is derived from the AVC class (class Example(AVC) :).
e The following variables are declared in the application.

self

self.
self.
self.
.integer
self.
self.
self.
self.

False
False

booleanl
boolean2
radio = 0

=0
float = 0.0
string = "'
textview = ''
status = '

e The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations
and to initialize the widgets values with the initial value of the connected variable .
Example files in directory 'examples' of distribution: program 'gtk showcase.py' , Glade
descriptor 'gtk_showcase.glade'.

9 .7 . Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is

displayed.

9.7.1

B AVC GTK countdown example - /& X

CLOSE ALL WINDOWS

B AVC GTK countdown example - O X

» Python source

.license

import gtk

#!/usr/bin/python
.copyright

(c) 2008 Fabrizio Pollastri

: GNU General Public License v3

import gobject

#- gimp tool kit bindings

Fabrizio Pollastri

38/115

AVC, Application View Controller User Manual

import gtk.glade # glade bindings
from avc import * # AVC
from random import randint # random integer generator

GLADE_ XML _MAIN = 'gtk countdown main.glade' # main window glade descriptor
GLADE XML CD = 'gtk countdown.glade' # count down window glade descriptor

TOPLEVEL NAME = 'countdown' # name of the top level widget
COUNTDOWN PERIOD = 500 # count down at 2 unit per second
MAX_CREATION PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
A countdown counter displayed in a Label widget. Count starts at given
value. When count reaches zero the counter and its GUI are destroyed.

def init (self,count start=10):

create GUI
self.glade = gtk.glade.XML(GLADE XML CD)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

init the counter variable
self.counter = count start

connect counter variable with label widget
self.avc_connect(self.glade.get widget(TOPLEVEL_NAME))

start count down
gobject.timeout add(COUNTDOWN PERIOD,self.decrementer)

def decrementer(self):
"Counter decrementer. Return False to destroy previous timer."

self.counter -=1

if self.counter:
if counter not zero: reschedule count timer
gobject.timeout add(COUNTDOWN PERIOD,self.decrementer)
else:
counter reached zero: destroy this countdown and its GUI
self.glade.get widget(TOPLEVEL NAME).destroy()

return False

class Example(AVC):
Continuously create at random intervals windows with a countdown from 10 to 0.
When a countdown reaches zero, its window is destroyed. Also create a main
window with a "close all" button.

def init (self):

create main window

Fabrizio Pollastri 39/115

AVC, Application View Controller User Manual

self.glade = gtk.glade.XML(GLADE XML MAIN)

create the first countdown
self.new countdown()

close all button connected variable
self.close all = False

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

def new countdown(self,count start=10):
"Create a new countdown"

create a new countdown
Countdown(count start)

autocall after a random delay
gobject.timeout add(randint(1,MAX CREATION PERIOD),self.new countdown)

return False # destroy previous timer

def on_destroy(self,window):
"Terminate program at window destroy"
gtk.main_quit()

def close all changed(self,value):
"Terminate program at 'close all' button pressing"
gtk.main_quit()

MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit
END
The GUI layout was previously edited with Glade and saved to the file

‘gtk_countdown_main.glade’ for the main window and to the file 'gtk_countdown.glade' for the
counter windows.
The key points of the example regarding AVC are the following.

During Glade editing of the main window, the name 'close_all' was given to the button
widget; during Glade editing of the counter window, the name 'counter' was given to
the label widget.

The AVC package is imported at program begin (from avc import *).

Both the application class and the counter class are derived from the AVC class (class
Example(AVC): | class Countdown(AVC):).

A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close all = False).

The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

The avc_init method is called after the instantiation of the application class
(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

Fabrizio Pollastri 40/115

AVC, Application View Controller User Manual

e A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count start)

e The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.glade.get widget(TOPLEVEL NAME))) with argument the window
widget of the counter. This call realizes the connection of the label widget to the
‘counter’ variable.

Example files in directory ‘'examples' of distribution: program 'gtk countdown.py' , Glade
descriptors 'gtk_countdown_main.glade' anc 'gtk_countdown.glade'.

9.8. List tree view example

The first row of this example shows the display capabilities of a widget in list view mode:
display of 2D tabular data. The second row shows the display capabilities of a widget in tree
mode: display of a hierarchical data tree. For each row, it is showed the connected python data
equivalent to data displayed by each widget. The rows of the list view are rolled down by one
position every 2 seconds.

o AVCE GIK list tree view ==
Data Structure Control Value Widget

collint col2 str

{'body": [[1, 'one']. [2, 'two'], [3, 'three']], ."1 one

list ‘head": ['coll int', 'col2 str']}

3 three

collint col2 str

- 1

{'body" {'1.1:[11, 'one one'], '1.2": [12, 'one two'],
tree 1" [1, 'one'], '2: [2, 'two'], '2.2": [22, 'two two'], '2.1"
[21, two one'l}, 'head": ['coll int', 'col2 str']}

v 2 two

22 itwo two

9 . 8 . 1 « Python source

#!/usr/bin/python

.copyright : (c) 2008 Fabrizio Pollastri.

.license : GNU General Public License v3

import gobject #- -

import gtk #- gimp tool kit bindings

import gtk.glade # glade bindings

from avc import * # AVC

import copy # object cloning support

GLADE XML = 'gtk listtreeview.glade' # GUI glade descriptor

UPDATE_PERIOD = 2000 # ms

class Example(AVC):

Fabrizio Pollastri 41/115

AVC, Application View Controller

User Manual

Showcase of display capabilities for the tree view widget

def init (self):

create GUI
self.glade = gtk.glade.XML(GLADE XML)

autoconnect GUI signal handlers
self.glade.signal autoconnect(self)

make tree view rows reorderable
self.glade.get widget('list treeview').set reorderable(True)
self.glade.get widget('tree treeview').set reorderable(True)

connected variables
self.list = {'head':['coll int', 'col2 str'l, \
'body':[[1,'one'],[2,"'two'],[3, 'three']l]l}
self.list work = copy.deepcopy(self.list)
self.tree = {'head':['coll int',6'col2 str'],'body':{ \
root rows
'1':[1,'one'], \
'2':[2,"two"'], \
children of root row '1'
'1.1':[11,'one one']l, \
'1.2':[12,'one two'], \
children of root row '2'
'2.1':[21, 'two one'], \
'2.2':[22,'two two']}}

start variables update
update = self.update()
gobject.timeout add (UPDATE_PERIOD,update.next)

def update(self):

Tabular data rows data are rolled down.
rows_num = len(self.list['body'])
while True:
save last row of data
last row = self.list work['body']1[-1]
shift down one position each data row
for i in range(1l,rows_num):
self.list work['body'][-1] = \
self.list work['body'][-1-1i]
copy last row into first position
self.list_work['body'][0] = last_row
copy working copy into connected variable
self.list = self.list work
yield True

def on destroy(self,window):
"Terminate program at window destroy"
gtk.main_quit()

MAIN

Fabrizio Pollastri 42/115

AVC, Application View Controller User Manual

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
gtk.main() # run GTK event loop until quit
END

The GUI layout was previously edited with Glade and saved to the file ‘gtk_listtreeview.glade’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e For the data structure of type list, a control variable named 'self.list' is defined in the
application and connected to label widget is put in the column “Control value” and to
the list view widget put in the column “Widget”. The control variable is set to the
following initial value:

self.list = {'head':['coll int', 'col2 str'], \
'body':[[1,'one'],[2,'two"'],[3, 'three']]}

e For the data structure of type tree, a control variable named 'self.tree’' is defined in the
application and connected to label widget is put in the column “Control value” and to
the tree view widget put in the column “Widget”. The control variable is set to the
following initial value:

self.tree = {'head':['coll int', 'col2 str'], 'body':{ \
root rows
'1':[1,'one'], \
'2':[2,"two"'], \
children of root row '1'
'1.1':[11, 'one one'], \
'1.2':[12,'one two'], \
children of root row '2'
'2.1':[21, 'two one'], \
'2.2':[22,'two two']1}}

e When the GTK event loop is entered both list and tree view are set to display the initial
values of the connected variables as explained in “List view" at page 16 and in “Tree
view” at page 16.

Example files in directory 'examples' of distribution: program 'gtk listtreeview.py' , Glade
descriptor 'gtk_listtreeview.glade'.

Fabrizio Pollastri 43/115

AVC, Application View Controller User Manual

10. GTK3+ examples

The GTK3+ examples follow the same schema of the GTK2+ examples. The following table
gives a complete list of the files of these examples with a brief description.

Program source User interface descriptor |description
gtk3 calendar.py gtk3 calendar.ui A label displaying the selected date in the
- - calendar
gtk3 Colorchooser_py gtk3 colorchooser.ui A Tlabel dlsplaylng the selected color in the
- - calorchooser
gtk3 countdown.py gtk3 countdown main.ui |Continuously creates at random intervals
o o o windows displaying a decrementing counter. When
gtk3 countdown.ui the count reaches zero, the counter window is

destroyed. Also a main window with a “close all
windows” button is displayed.

gtk3 counter.py gtk3 counter.ui A label displaying an incrementing counter and

- - a check button controlling the incrementing
speed

gtk3 label.py gtk3 label.ui Display all the formatting capabilities of the
- - label widget

gtk3 listtreeview.py |gtk3 listtreeview.ui Display capabilities of list tree widget with
- - its controlling value

gtk3 showcase.py gtk3 showcase.ui Show a table of almost all widget/variable type
o o combinations supported for GTK3+

gtk3 spinbutton.py gtk3 spinbutton.ui A spinbutton whose value is replicated into a
- - label

gtk3 spinbutton progui.py As above, but the user interface is generated
- - programmatically

10.1. Spin button example

This simple example shows how AVC can manage data exchange from widget to widget
without any specific code in the application. The program creates a window with two widgets: a
spin button and a label. When the value in the spin button is changed by clicking on up or down
arrows or by entering it with the keyboard, the new value is displayed into the label.

10- 1 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2015 Fabrizio Pollastri.
.license : GNU General Public License (see below)

import gi.repository.Gtk as Gtk # gimp tool kit bindings

Fabrizio Pollastri 44/115

AVC, Application View Controller

User Manual

from avc import *
UL XML = 'gtk3 spinbutton.ui’
ROOT WINDOW = 'root window'

class Example(AVC):

A spin button whose value is replicated into a label

AVC

GUI descriptor
root window name

def init (self):

def on_destroy(self,window):

#i## MAIN

example = Example() # instantiate the application
example.avc init() # connect widgets with variables
Gtk.main() # run GTK event loop until quit
END

create GUI

self.builder = Gtk.Builder()
self.builder.add from file(UI XML)

self.builder.connect signals(self)

self.root window = self.builder.get object(ROOT WINDOW)
self.root window.show all()

the variable holding the spin button value
self.spin value = 0

"Terminate program at window destroy"
Gtk.main quit()

The GUI layout was previously edited with Glade and saved to the file ‘gtk_spinbutton.glade’.

The key points of the example regarding AVC are the following.

During Glade editing, the same name 'spin_value' was given to the spin button and to

The AVC package is imported at program begin (from avc import *).
The application class is derived from the AVC class (class Example(AVC):).

A integer variable with an initial value of 0 and name 'spin_value' is declared in the

°
the label.
°
°
°
application (self.spin value = 0).
°

The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc init()).

Example files in directory 'examples' of distribution: program 'gtk3 spinbutton.py' , User
interface descriptor 'gtk3_spinbutton.ui'.

Fabrizio Pollastri

45/115

AVC, Application View Controller

11. Qt4 examples

11.1. Spin box example

User Manual

For a functional description of the graphic interface see the GTK+ “Spin button example” at

page 27.

'm AVC Qt4 spin box example 1= 8 K]

1 1 . 1 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI FILE = 'qt4 spinbox.ui' # qt ui descriptor

class Example(QApplication,AVC):
"A spin box whose value is replicated into a text label"

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

the variable holding the spin box value
self.spin value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec () # run Qt event loop until quit

END

Fabrizio Pollastri 46/115

AVC, Application View Controller User Manual

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_spinbox.ui’.
The key points of the example regarding AVC are the following.

During Qt4 Designer editing, the name 'spin_value__spinbox' was given to the spin
box and the name 'spin_value__label' was given to the label.

The AVC package is imported at program begin (from avc import *).

The application class is derived from the QApplication class of Qt4 and from the AVC
class of AVC (class Example(QApplication,AVC):)

A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

The avc_init method is called after the instantation of the application class
(example.avc init()) to realize the connections of the two widgets through the
'spin_value' variable and to initialize the widgets values with the initial value of the
variable .

Example files in directory 'examples' of distribution: program 'qt4_spinbox.py', Ul descriptor
'qt4_spinbox.ui'.

11.2. calendar example

This example shows the graphic rendering of the calendar widget displaying the default date of
January 1, 2000.

January_ 2000

The connected variable can be a list or a tuple with the format yyyy, mm, dd: four digit year,
two digit month, two digit day. Month and day numbers start from 1.

1 1 . 2 . 1 = Python source

#!/usr/bin/python

.copyright : (c) 2013 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support
from avc import * # AVC

UI FILE = 'qt4 calendar.ui' # qt ui descriptor

Fabrizio Pollastri 47/115

AVC, Application View Controller User Manual

class Example(QApplication,AVC):

Calendar widget connected to label widget (Qt4)

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

all types of connected variables
self.calendar value = (2000,1,1)

#it## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec_ () # run Qt event loop until quit
END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_calendar.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the QT event loop is entered the calendar date is set to the initial value of the
connected variable: January 1, 2000.

Example files in directory 'examples' of distribution: program 'qt4 calendar.py', Ul descriptor
'‘qt4_calendar.ui'.

11.3. color dialog example

This example shows the graphic rendering of the color selection widget displaying the default
color of 0.25 red, 0.5 green, 1.0 blue, 1.0 alpha. Color selection has two windows. The base
window displaying the connected variable with the default color values (first image). The color
dialog window displaying graphically the current color and allowing user interaction to choose a
new color (second image).

Fabrizio Pollastri 48/115

AVC, Application View Controller User Manual

The connected variable can be a list or a tuple with the format red, green, blue, alpha, where
each color component spans the value range 0.0 - 1.0 . Alpha is the color opacity: 1.0 is the
maximun opacity.

1 1 . 3 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2013 Fabrizio Pollastri

Fabrizio Pollastri 49/115

AVC, Application View Controller User Manual

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support
from avc import * # AVC

UI FILE = 'qt4 colordialog.ui' # qt ui descriptor

class Example(QApplication,AVC):

ColorDialog connected to label widget (Qt4)

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

all types of connected variables
self.open _color chooser = False
self.color value = (0.25,0.5,1.0,1.0)

def open_color_chooser_changed(self,value):

Create color chooser dialog connecting a color variable to it

if value:
create color chooser dialog with name matching 'color value'
self.color chooser = QColorDialog()
self.color chooser.setObjectName('color value color chooser')
self.color_chooser.show()
connect color variable with color chooser
self.avc_connect(self.color chooser)

#i## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec () # run Qt event loop until quit
END

The GUI layout was previously edited with Qt4 Designer and saved to the file
‘qt4_colordialog.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the QT event loop is entered the color is set to the initial value of the connected
variable: 0.25,0.5,1.0,1.0 .

Example files in directory 'examples' of distribution: program 'qt4_colordialog.py', Ul descriptor

Fabrizio Pollastri 50/115

AVC, Application View Controller User Manual

'‘qt4_colordialog.ui'.

11.4. counter example

For a functional description of the graphical interface see the GTK+ “Counter example” at
page 31.

|'-- AVC Qt4 counter example =8 %/

45 ¥| high speed

1 1 . 4 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface

from PyQt4.uic import * # ui files realizer

import sys # system support

from avc import * # AVC

UI FILE = 'qt4 counter.ui' # qt ui descriptor

LOW SPEED = 0.5 #--

HIGH SPEED = 0.1 #- low and high speed count period (sec)

class ExampleGUI(QApplication):
"Counter GUI creation”

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

def timer start(self,period,function):
"Start a Qt timer calling back 'function' every 'period' seconds."
self.timerl = QTimer()
QObject.connect(self.timerl,SIGNAL("timeout()"), function)
self.timerl.start(int(period * 1000.0))

def timer set period(self,period):
"Set a new period to timer"
self.timerl.stop()
self.timerl.start(int(period * 1000.0))

class ExampleMain(AVC):

Fabrizio Pollastri 51/115

AVC, Application View Controller User Manual

A counter displayed in a Label widget whose count speed can be
accelerated by checking a check box.

def init (self,gqui):

save GUI
self.gui = gui

the counter variable and its speed status
self.counter = 0
self.high speed = False

start incrementer timer
self.qui.timer start(LOW SPEED,self.incrementer)

def incrementer(self):
Counter incrementer: increment period = LOW SPEED, if high speed
is False, increment period = HIGH SPEED otherwise.
self.counter +=1
if self.high speed:
period = HIGH SPEED
else:
period = LOW_SPEED
self.qui.timer set period(period)

def high speed changed(self,value):
"Notify change of counting speed to terminal"
if value:
print ‘counting speed changed to high'
else:
print 'counting speed changed to low'

#it## MAIN

example gui = ExampleGUI() # create the application GUI
example = ExampleMain(example gui) # instantiate the application
example.avc_init() # connect widgets with variables
example gui.exec () # run Qt event loop until quit
END

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_counter.ui’.
The key points of the example regarding AVC are the following.

e During Qt4 Designer editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.
e The AVC package is imported at program begin (from avc import *).

e The application class is derived from the QApplication class of Qt4 and from the AVC
class of AVC. (class Example(QApplication,AVC):)

e A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

e A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment speed

Fabrizio Pollastri 52/115

AVC, Application View Controller User Manual

(self.high speed = False).

e The avc_ init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the ‘counter’ variable .

Example files in directory 'examples' of distribution: program 'qt4 counter.py', Ul descriptor
'‘qt4_counter.ui'.

11.5. Label example

This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

AVC Ot4 label example

Control type Format string Label with format Label without format
bool <b=%d=/b> 1 True
float <b=>=%f</b=> 1.000000 1.0
int <=b=>%d 1 1
list <b=>%d,%d %d 1,2,3 [1., 2, 3]
string <b=%s</b=> abc abc
tuple <h=%d,%d %d=/b> 1,2,3 (1, 2, 3)
object
with attributes <b=%(x)d %(yld=/b= 1,2 <=__main__.0bjinstance at Oxb6aa00cc=>
x=1, y=2

1 1 . 5 . 1 = Python source

#!/usr/bin/python

.copyright : (c) 2008 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer
import sys # system support

from avc import * # AVC

UI FILE = 'qt4 label.ui' # qt ul descriptor

Fabrizio Pollastri 53/115

AVC, Application View Controller User Manual

class Example(QApplication,AVC):

Showcase of formatting capabilities for the label widget

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

all types of connected variables

self.bool value = True
self.float value = 1.0
self.int value =1
self.list value = [1,2,3]
self.str value = 'abc'
self.tuple value = (1,2,3)

class 0Obj:
"A generic object with 2 attributes x,y"

def init (self):
self.x =1
self.y = 2

self.obj value = 0bj()

MAIN

example = Example() # instantiate the application

example.avc_init()
example.exec ()

END

connect widgets with variables
run Qt event loop until quit

The GUI layout was previously edited with

Qt4 Designer and saved to the file ‘qt4_label.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant

points of the label example about AVC are

the following.

e For each control type (for each row) the two label widgets, one in the column “Label
with format” and one in the column “Label without format”, are connected to the
variable of the corresponding type. For example, in row “boolean”, both label widgets
are called “bool_value”, so they connect to the variable self.bool value .

When the Qt4 event loop is entered both columns are set to display the initial values of
the connected variables. For example, in row “integer”, both labels are set to display
the integer value 1.

The differences of representation between the column “Label with format” and the
column “Label without format” reflect the different printout results coming from the
formatting capabilities of the label widget and from str, the generic textual rendering
function of python.

Example files in directory 'examples' of
'‘qt4_label.ui'.

11. 6. Showcase examp

This example shows a table of all widget

distribution: program 'gt4_label.py' , Ul descriptor

le

/variable type combinations supported by AVC. The

program creates a window with three columns: the first shows the type of the connected

Fabrizio Pollastri

54/115

AVC, Application View Controller User Manual

variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination.

e Row 1: memoryless button with boolean variable, pressed = True, unpressed = False.

e Row 2: buttons with memory, toggle and check buttons, pressed = True, unpressed =
False.

e Row 3: mutually exclusive choices widgets, radio buttons numbered from 0 to 2 and a
combo box with 3 items, index variable = number of checked radio button and selected
item of combo box.

e Row 4: integer input/output widgets, spin button, entry and slider.
e Row 5: float input/output widgets, spin button and entry.

e Row 6: string input/output widget, entry.

e Row 7: string input/output widget, text view/edit.

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values of the connected variables
interacting with the widgets.

'm AVC Qtg showcase example ’:”E\’T\
Control Type Widgets Control Value
I push button l False
boolean
push button v| check box True
radio button combo box
choice 0
index (integer) i -
q choice 1 choice 2 = 2
@ choice 2
spin box entry slider
integer 5 }% 5 T 5
float 250 ERES 2.50
entry
string [Y.Y-V.Y.Y AAAAA
text viewfedit
line of text, line of text, line of text line of text, line
tri line of text, line of text, line of text line of text, line
SLong line of text, line of text, line of text line of text, line
line of text, line of text, line of text lina nf text lina

1 1 . 6 . 1 « Python source

#!/usr/bin/python

.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface
from PyQt4.uic import * # ui files realizer

Fabrizio Pollastri 55/115

AVC, Application View Controller

User Manual

import sys
from avc import *

UI FILE = 'qt4 showcase.ui'
INCREMENTER PERIOD = 333

system support
AVC

qt ui descriptor
ms

class Example(QApplication,AVC):

A table of all supported widget/control type combinations

def init (self):

create GUI
QApplication.

init (self,sys.argv)

self.root = loadUi(UI FILE)

self.root.show()

group all radio buttons
managed by Qt4 Designer
self.radio button0® = self.
self.radio buttonl self.
self.radio button2 = self.
self.radio _button group =

into a button group. Button group not

?!
root.findChild(QWidget, 'radio_ button0')
root.findChild(QWidget, 'radio buttonl')
root.findChild(QWidget, 'radio_ button2')
QButtonGroup()

self.
self.
self.

radio button_group.
radio button group.
radio button group.

the control

variables

addButton(self.radio button0,0)
addButton(self.radio buttonl,1)
addButton(self.radio button2,2)

False
False

self.booleanl
self.boolean2
self.radio = 0
self.integer = 0
self.float = 0.0
self.string = "'
self.textview = ''

start variables incrementer

self.increment = self.incrementer()

self.timer = QTimer(self)
self.connect(self.timer,SIGNAL("timeout()"),self.timer_ function)
self.timer.start(int (INCREMENTER PERIOD))

def timer function(self):

self.increment.next()

def incrementer(self):

Booleans are toggled, radio button index is rotated from first to last,

integer is incremented by 1, float by 0.5, string is appended a char

until maxlen when string is cleared, text view/edit is appended a line
of text until maxlen when text is cleared, status bar message is toggled.

Return True to keep timer alive.

while True:

self.booleanl = not self.booleanl
yield True

Fabrizio Pollastri

56/115

AVC, Application View Controller

User Manual

self.boolean2 = not self.boolean2
yield True

if self.radio == 2:
self.radio = 0
else:
self.radio += 1
yield True

self.integer +=1
yield True

self.float += 0.5
yield True

if len(self.string) >= 10:
self.string = 'A'

else:
self.string += 'A'
yield True

if len(self.textview) >= 200:
self.textview = ''
else:

self.textview += 'line of text, line of text, line of text\n'

yield True

MAIN

example = Example()
example.avc_init()
example.exec ()

END

instantiate the application

connect widgets with variables
run Qt event loop until quit

The GUI layout was previously edited with Qt4 Designer and saved to the file ‘qt4_showcase.ui’.
The key points of the example regarding AVC are the following.

During Qt designer editing, the following names were given to the widgets.

widget hame
Row 1:
button booleanl_ button
output value label booleanl__var
Row 2:
togglebutton boolean2__togglebutton
checkbutton boolean2__checkbutton
output value label boolean2__var
Row 3:

radiobutton0

radio__radiobutton0

radiobuttonl

radio__radiobuttonl

radiobutton?2

radio__radiobutton2

Fabrizio Pollastri

combobox

radio__combobox

output value label

radio__var

Row 4:

57/115

AVC, Application View Controller

spinbutton integer__spinbox
entry integer__entry
slider integer_slider
output value label integer__var

Row 5:

spinbutton float__spinbutton
entry float__entry
output value label float_ var

Row 6:

entry string__entry
output value label string__var

Row 7:

textview textview__textview
output value label textview__var

User Manual

e The AVC package is imported at program begin (from avc import *).

e The application class is derived from the QApplication class of Qt4 and from the AVC
class of AVC (class Example(QApplication,AVC):)

e The following variables are declared in the application.

self.booleanl = False
self.boolean2 = False
self.radio = 0
self.integer = 0
self.float = 0.0

self.string = '
self.textview = "'

e The avc init method is called after the instantation of the application class
(example.avc init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable.

Example files in directory 'examples' of distribution: program 'qt4_showcase.py', Ul descriptor
'‘qt4_showcase.ui'.

11.7. countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

B AVC Otd countdown example — O (X

CLOSE ALL WINDOWS

B AVC Qtd countdown example = O (X

58/115

Fabrizio Pollastri

AVC, Application View Controller User Manual

1 1 . 7 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri

.license : GNU General Public License v3

from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import * # Qt GUI interface

from PyQt4.uic import * # ui files realizer

import sys # system support

from avc import * # AVC

from random import randint # random integer generator

UI MAIN = 'qt4 countdown main.ui' # qt ui descriptor for main window

UL CD = 'qt4 countdown.ui' # qt ui descriptor for countdown window
TOPLEVEL NAME = 'countdown' # name of the top level widget

COUNTDOWN PERIOD = 500 # count down at 2 unit per second

MAX CREATION PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):
A countdown counter displayed in a Label widget. Count starts at given
value. When count reaches zero the counter and its GUI are destroyed.

def init (self,count start=10):

create GUI
self.root = loadUi(UI CD)
self.root.show()

init the counter variable
self.counter = count start

connect counter variable with label widget
self.avc_connect(self.root)

start count down

self.timer = QTimer(self.root)
self.root.connect(self.timer,SIGNAL("timeout()"),self.decrementer)
self.timer.start(COUNTDOWN PERIOD)

def decrementer(self):
"Counter decrementer. Return False to destroy previous timer."
self.counter -=1
if counter reached zero, destroy this countdown and its GUI
if not self.counter:
self.timer.stop()
del self.timer
self.root.close()

class Example(QApplication,AVC):

Continuously create at random intervals windows with a countdown from 10 to 0.
When a countdown reaches zero, its window is destroyed. Also create a main

Fabrizio Pollastri 59/115

AVC,

Application View Controller User Manual

window with a "close all" button.

def init (self):

create main window
QApplication. init (self,sys.argv)
self.root = loadUi(UI MAIN)
self.root.show()

close all button connected variable
self.close all = False

start count down

self.timer = QTimer(self)
self.connect(self.timer,SIGNAL("timeout()"),self.new countdown)
self.timer.start(randint(1,MAX CREATION PERIOD))

def new countdown(self,count start=10):

"Create a new countdown"

create a new countdown
Countdown(count start)

autocall after a random delay
self.timer.stop()
self.timer.start(randint(1,MAX CREATION PERIOD))

def close all changed(self,value):

"Terminate program at 'close all' button pressing"
self.quit()

#i## MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.exec () # run Qt event loop until quit
END
The GUI Ilayout was previously edited with Qt Designer and saved to the file

‘gqt4_countdown_main.ui’ for the main window and to the file 'qt4_countdown.ui' for the counter
windows.

The key points of the example regarding AVC are the following.

During Designer editing of the main window, the name 'close_all' was given to the
button widget; during Designer editing of the counter window, the name 'counter' was
given to the label widget.

The AVC package is imported at program begin (from avc import *).

Both the application class and the counter class are derived from the AVC class (class
Example (QApplication,AVC): | class Countdown(AVC):).

A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close all = False).

The method 'close_all changed' is defined in the application to handle the press event
of the 'close all windows' button.

The avc_init method is called after the instantiation of the application class

Fabrizio Pollastri 60/115

AVC, Application View Controller

User Manual

(example.avc init()) to init AVC logic and to realize the connection of the 'close all

windows' button to the 'close_all' variable.

e A integer variable with an initial default value of 10 and name 'counter' is declared in

the Countdown class (self.counter = count start)

e The avc_connect method is called at the instantation of the Countdown class
(self.avc _connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.
Example files in directory 'examples' of distribution: program 'qt4_countdown.py', Qt Designer

descriptors 'qt4_countdown_main.ui' anc 'qt4_countdown.ui'.

11.8. List tree view example

The first row of this example shows the display capabilities of a widget in list view mode:
display of 2D tabular data. The second row shows the display capabilities of a widget in tree
mode: display of a hierarchical data tree. For each row, it is showed the connected python data
equivalent to data displayed by each widget. The rows of the list view are rolled down by one

position every 2 seconds.

EEE
Data Structure Control Value Widget
collint col2 str
1 ane
List {body" [[1.'oneT, [2, twoT, [3, three], |2 two
‘head": [col1 int, ‘col2 strT) 3 three
collint col2sir
=1 one
[body" {1.1[11, 'one one, "1 2 [12, 11 oneone
; ‘one two'], "1":[1, 'onel, ‘2" [2, 'two], 12 onetwo
ree 2.2 [22, two two, 2.1 [21, wo -2 two
oneT), head:[col1 int, ‘col2 str]} 21 two one
22 two two
1 1 . 8 . 1 « Python source
#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri.
.license : GNU General Public License v3
from PyQt4.QtCore import * # Qt core

from PyQt4.QtGui import *
from PyQt4.uic import *

Qt GUI interface
ui files realizer

import copy # object cloning support
import sys # system support

from avc import * # AVC

UI FILE = 'qt4 listtreeview.ui' # qt ui descriptor

Fabrizio Pollastri 61/115

AVC, Application View Controller User Manual

UPDATE_PERIOD = 2000 # ms

class Example(QApplication,AVC):

Showcase of display capabilities for the list tree view widget

def init (self):

create GUI
QApplication. init (self,sys.argv)
self.root = loadUi(UI FILE)
self.root.show()

connected variables
self.list = {'head':['coll int', 'col2 str'l, \
'body':[[1,'one'],[2,"'two'],[3, 'three']l]l}
self.list work = copy.deepcopy(self.list)
self.tree = {'head':['coll int',6'col2 str'],'body':{ \
root rows
'1':[1,'one'], \
'2':[2,"two"'], \
children of root row '1'
'1.1':[11,'one one']l, \
'1.2':[12,'one two'], \
children of root row '2'
'2.1':[21, 'two one'], \
'2.2':[22,'two two']}}

start variables update

update = self.update()

self.timerl = QTimer()

QObject.connect(self.timerl,SIGNAL ("timeout()"),update.next)
self.timerl.start(UPDATE PERIOD)

def update(self):

Tabular data rows data are rolled down.
rows_num = len(self.list['body'])
while True:
save last row of data
last row = self.list work['body'][-1]
shift down one position each data row
for i in range(l,rows num):
self.list work['body']1[-i] = \
self.list work['body'][-1-i]
copy last row into first position
self.list work['body'][0] = last row
copy working copy into connected variable
self.list = self.list work

yield True
#it## MAIN
example = Example() # instantiate the application
example.avc init() # connect widgets with variables
example.exec_ () # run Qt event loop until quit

Fabrizio Pollastri 62/115

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with Qt Designer and saved to the file
‘qt4_listtreeview.ui’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the list tree view example are the same of the GTK+ “List tree view example”example
at page 41.

Example files in directory 'examples' of distribution: program 'qt4 listtreeview.py', Qt Designer
descriptor 'qt4_listtreeview.ui'.

Fabrizio Pollastri 63/115

AVC, Application View Controller User Manual

12. Tk examples

12.1. Spin box example

For a functional description of the graphical interface see the GTK+ “Spin button example” at
page 27 .

|'-- AVC Tk spin box example = |0O/%|

1 2 . 1 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri

.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk spinbox.tcl' # GUI description as tcl script

class Example(AVC):

A spin control whose value is replicated into a label

def init (self):

create GUI
self.root = Tk()

self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
self.root.tk.evalfile(TCL _FILE)

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.
self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

the variable holding the spin control value
self.spin value = 0

#i## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
Tkinter.mainloop() # run Tk event loop until quit

Fabrizio Pollastri 64/115

AVC,

Application View Controller User Manual

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_spinbox.tcl’.
The key points of the example regarding AVC are the following.

During Visual Tcl editing, the name 'spin_value__spinbox' was given to the spin box
and the name 'spin_value__label' was given to the label.

The AVC package is imported at program begin (from avc import *).

The application class is derived from the from the AVC class of AVC (class
Example(AVC) :).

A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin value = 0).

The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc init()).

Example files in directory 'examples' of distribution: program 'tk_spinbox.py', graphic interface
descriptor as tcl script 'tk_spinbox.tcl'.

12.2. counter example

For a functional description of the graphical interface see the GTK+ “Counter example” at

page

31.

|'_- AVC Tk counter example = |@/x|

74 E high speed

1 2 . 2 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2006 Fabrizio Pollastri

.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL_FILE = 'tk counter.tcl' # GUI description as tcl script

LOW SPEED = 500 #--

HIGH SPEED = 100 #- low and high speed count period (ms)

class ExampleGUI:
"Counter GUI creation"

def init (self):

create GUI

self.root = Tk()

self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
self.root.tk.evalfile(TCL FILE)

Fabrizio Pollastri 65/115

AVC, Application View Controller User Manual

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.

self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

def timer(self,period, function):

"Start a Tk timer calling back 'function' every 'period' seconds."
self.root.after(period, function)

class ExampleMain(AVC):

A counter displayed in a Label widget whose count speed can be doubled
by pressing a Toggle Button.

def init (self,gqui):

save GUI
self.gui = gui

the counter variable and its speed status
self.counter = 0

self.high speed = False

start incrementer timer
self.qui.timer(LOW_SPEED,self.incrementer)

def incrementer(self):

Counter incrementer: increment period = LOW SPEED, if high speed is False,
increment period = HIGH SPEED otherwise.

self.counter +=1
if self.high speed:
period = HIGH SPEED
else:
period = LOW_SPEED
self.qui.timer(period,self.incrementer)

def high speed changed(self,value):
"Notify change of counting speed to terminal"
if value:

print ‘counting speed changed to high'
else:

print 'counting speed changed to low'

#it## MAIN

example gui = ExampleGUI() # create the application GUI
example = ExampleMain(example gui) # instantiate the application
example.avc_init() # connect widgets with variables
mainloop() # run Tk event loop until quit
END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_counter.tcl'.
The key points of the example regarding AVC are the following.

Fabrizio Pollastri 66/115

AVC, Application View Controller User Manual

During Visual Tcl editing, the name 'counter' was given to the label and the name
'high_speed' was given to the check button.
The AVC package is imported at program begin (from avc import *).

The application class is derived from the AVC class of AVC. (class Example(AVC):).

A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment (self.high speed =
False).

The avc_init method is called after the instantation of the application class
(example.avc_init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the ‘counter’ variable .

Example files in directory 'examples' of distribution: program 'tk_counter.py’, graphic interface
descriptor as tcl script 'tk_counter.tcl'.

12.3. Label example

This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
variable is displayed into two label widgets: one with formatting and the other with the
standard python string representation.

AVC Tk label example ClEd
Controltype Format string Label with format Label without format
baolean %d 1 True
float %ot 1000000 10
Integer %d 1 1
llst “od ed d 123 [1,2,9]
string %s abc abc
fuple %d %od Sod 123 (1,2,3)
object with attributes k=1y=2 %(x)d,%(yd 12 «<_maln__Ob] Instance at Oxb7a56d8c

1 2 . 3 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

Fabrizio Pollastri 67/115

AVC, Application View Controller

User Manual

from Tkinter import *
from avc import *

TCL FILE = 'tk label.tcl'

Tk interface
AVC

GUI description as tcl script

class Example(AVC):

Showcase of formatting capabilities for the label widget

def init (self):

create GUI

self.root = Tk()

self.root.eval('set argc {}; set argv {}; proc
self.root.tk.evalfile(TCL_FILE)

::main {argc argv} {};')

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.
self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

all types of connected variables
self.bool value = True

self.float value = 1.0
self.int value =1
self.list value = [1,2,3]

self.str value = 'abc'
self.tuple value = (1,2,3)
class 0Obj:

"A generic object with 2 attributes x,y"
def _ init (self):
self.x =1
self.y = 2
self.obj value = 0bj()

MAIN
example = Example()

example.avc_init()
Tkinter.mainloop()

instantiate the application
connect widgets with variables
run Tk event loop until quit

END

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_label.tcl’.
Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e For each control type (for each row) the two label widgets, one in the column “Label
with format” and one in the column “Label without format”, are connected to the
variable of the corresponding type. For example, in row “boolean”, both label widgets
are called “bool_value”, so they connect to the variable self.bool value .

e When the Tk event loop is entered both columns are set to display the initial values of
the connected variables. For example, in row “integer”, both labels are set to display
the integer value 1.

e The differences of representation between the column “Label with format” and the
column “Label without format” reflect the different printout results coming from the
formatting capabilities of the label widget and from str, the generic textual rendering
function of python.

Fabrizio Pollastri

68/115

AVC, Application View Controller User Manual

Example files in directory 'examples' of distribution: program 'tk label.py', graphic interface
descriptor as tcl script 'tk_label.tcl'.

12.4. showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

e Row 1: memoryless button with boolean variable, pressed = True, unpressed = False.

e Row 2: button with memory, check button, pressed = True, unpressed = False.

e Row 3: mutually exclusive choices widgets, radio buttons numbered from 0 to 2, index
variable = number of checked radio button.

Row 4: integer input/output widgets, spin button, entry and slider.

Row 5: float input/output widgets, spin button, entry and slider.

Row 6: string input/output widget, entry.

Row 7: string input/output widget, text view/edit.

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values of the connected variables
interacting with the widgets.

[AVC Tk showcase example EEIE]
Control Type Widgels Control Value
boalean1 button | True
boalkean2 M check button True
Index | ~ radio butlon 0 - radio buttan 1 # radlo huﬂon2| 2
Integer J 5

5 3 5

2.5

float 25

25 3 |25
siring AAAAL ARAAR
line of text, line of text, line of line of text, line of text, line of text
strin, line of text, line of text, line of line of text, line of text, line of text
] line of text, line of text, line of line of text, line of text, line of text
Line of text, line of text, line of line of text. line of text. line of text

1 2 . 4 . 1 =« Python source

#!/usr/bin/python

.copyright : (c) 2007 Fabrizio Pollastri

.license : GNU General Public License v3

from Tkinter import * # Tk interface

from avc import * # AVC

TCL _FILE = 'tk showcase.tcl' # GUI description as tcl script
INCREMENTER PERIOD = 0.333 # seconds

Fabrizio Pollastri 69/115

AVC, Application View Controller User Manual

class Example(AVC):
"A table of all supported widget/control type combinations"

def init (self):

create GUI

self.root = Tk()

self.root.eval('set argc {}; set argv {}; proc ::main {argc argv} {};')
self.root.tk.evalfile(TCL _FILE)

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.
self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

the control variables
self.booleanl False
self.boolean2 False
self.radio = 0
self.integer = 0
self.float = 0.0
self.string = "'
self.textview = ''

start variables incrementer

increment = self.incrementer()

self.timer_ function = increment.next

self.root.after(int (INCREMENTER PERIOD * 1000.0),self.timer wrap)

def timer wrap(self):
"Call given function, reschedule it after return"
self.timer function()
self.root.after(int (INCREMENTER PERIOD * 1000.0),self.timer wrap)

def incrementer(self):
Booleans are toggled, radio button index is rotated from first to last,
integer is incremented by 1, float by 0.5, string is appended a char
until maxlen when string is cleared, text view/edit is appended a line
of text until maxlen when it is cleared.
Return True to keep timer alive.
while True:
self.booleanl = not self.booleanl
yield True
self.boolean2 not self.boolean2
yield True

if self.radio ==
self.radio = 0

else:
self.radio += 1
yield True

self.integer +=1
yield True

self.float += 0.5
yield True

Fabrizio Pollastri 70/115

AVC, Application View Controller

User Manual

self.string

else:
self.string
yield True

if len(self.t
self.textvi
else:

yield True

MAIN

example = Example()
example.avc_init()
Tkinter.mainloop()

END

if len(self.string) >= 20:

= |A|

4= |A|

extview) >= 200:
ew = [|

self.textview += 'line of text, line of text, line of text\n'

instantiate the application

connect widgets with variables
run Tk event loop until quit

The GUI layout was previously edited with Visual Tcl and saved to the file ‘tk_showcase.tcl’.
The key points of the example regarding AVC are the following.

e During Visual Tcl editing, the following names were given to the widgets.

Row widget name

1 button booleanl__button
output value label booleanl_ var

5 checkbutton boolean2__checkbutton
output value label boolean2_var
radiobutton0 radio__radiobutton0

3 radiobuttonl radio__radiobuttonl
radiobutton2 radio__radiobutton2
output value label radio__var
spinbutton integer__spinbox

4 entry integer__entry
slider integer__hscale
output value label integer__var
spinbutton float__spinbox

5 entry float__entry
slider float__hscale
output value label float__var

6 entry string__entry
output value label string__var
textview textview__textview

/ output value label textview__var

e The AVC package is imported at program begin (from avc import *).
e The application class is derived from the AVC class (class Example(AVC):).

e The following variables are declared in the application.

self.booleanl = False

Fabrizio Pollastri

71/115

AVC, Application View Controller User Manual

self.boolean2 = False
self.radio = 0
self.integer =
self.float = 0.
self.string = '
self.textview = ''
self.status = "'

0
0

e The avc init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable .

Example files in directory 'examples' of distribution:
interface descriptor as tcl script 'tk_showcase.tcl'.

program 'tk showcase.py', graphic

12.5. countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

AVC Tk countdown example

CLOSE ALL WINDOWS

AVC Tk countdown example

1 2 . 5 . 1 = Python source

#!/usr/bin/python
.copyright (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

from Tkinter import *
from avc import *
from random import randint

TOPLEVEL NAME = 'countdown'
COUNTDOWN PERIOD = 500
MAX_CREATION_PERIOD = 40600

class Countdown(AVC):

A countdown counter displayed in a
value. When count reaches zero the

Tk interface
AVC for Tk

random integer generator
name of the top level widget

count down at 2 unit per second
create a new count down at 1/2 this

Label widget. Count starts at given
counter and its GUI are destroyed.

Fabrizio Pollastri

72/115

AVC, Application View Controller User Manual

def init (self,count start=10):
create GUI

main window

self.root = Tk()

self.root.title('AVC Tk countdown example')

self.frame = Frame(self.root,name='countdown',width=350,height=50)
self.frame.pack(expand=1)

count down label
self.label = Label(self.frame,name='counter')
self.label.place(relx=0.5,rely=0.4,anchor=CENTER)

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.
self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

init the counter variable
self.counter = count start

connect counter variable with label widget
self.avc_connect(self.root)

start count down
self.root.after (COUNTDOWN PERIOD,self.decrementer)

def decrementer(self):

"Counter decrementer. Return False to destroy previous timer."

self.counter -=1

if self.counter:
if counter not zero: reschedule count timer
self.root.after (COUNTDOWN PERIOD,self.decrementer)

else:
counter reached zero: destroy this countdown and its GUI
self.root.destroy()

class Example(AVC):
Continuously create at random intervals windows with a countdown from 10 to 0.
When a countdown reaches zero, its window is destroyed. Also create a main
window with a "close all" button.

def init (self):
create GUI

main window

self.root = Tk()

self.root.title('AVC Tk countdown example')

self.frame = Frame(self.root,name='countdown',width=350,height=50)
self.frame.pack(expand=1)

close all button
self.button = Button(self.frame,name="'close all', text='CLOSE ALL WINDOWS')
self.button.place(relx=0.5,rely=0.5,anchor=CENTER)

Fabrizio Pollastri 73/115

AVC, Application View Controller User Manual

terminate program at toplevel window destroy: connect toplevel
destroy signal to termination handler.
self.root.bind class('Toplevel', '<Destroy>',lambda event: self.root.quit())

create the first countdown
self.new_countdown()

close all button connected variable
self.close all = False

def new countdown(self,count start=10):
"Create a new countdown"

create a new countdown
Countdown(count start)

autocall after a random delay
self.root.after(randint(1,MAX CREATION PERIOD),self.new_countdown)

def close all changed(self,value):
"Terminate program at 'close all' button pressing"
self.root.quit()

#i## MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
mainloop() # run Tk event loop until quit

END

The key points of the example regarding AVC are the following.

e In the main window, the name 'close_all' was given to the button widget; in the counter

window, the name 'counter' was given to the label widget.
The AVC package is imported at program begin (from avc import *).

Both the application class and the counter class are derived from the AVC class (class
Example(AVC): | class Countdown(AVC):).

e A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close all = False).

e The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

e The avc_init method is called after the instantiation of the application class
(example.avc init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

e A integer variable with an initial default value of 10 and name 'counter’ is declared in
the Countdown class (self.counter = count start)

e The avc _connect method is called at the instantation of the Countdown class

(self.avc _connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.

Example files in directory 'examples' of distribution: program 'tk_countdown_progui.py".

Fabrizio Pollastri 74/115

AVC, Application View Controller

13. wxWidgets examples

13.1. Spin control example

User Manual

For a functional description of the graphic interface see the GTK+ “Spin button example” at

page 27.

|.-- AVC wx spin control example :]E]Fi

13 . 1 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri

.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support
from avc import * # AVC

WXGLADE XML = 'wx_spinctrl.xrc' # GUI wxGlade descriptor

class Example(wx.PySimpleApp,AVC):

A spin button whose value is replicated into a static text

def init (self):
create GUI

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml resource = xrc.XmlResource(WXGLADE XML)
self.root = xml resource.LoadFrame(None, 'frame 1')
self.root.Show()

the variable holding the spin button value
self.spin value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

Fabrizio Pollastri 75/115

AVC, Application View Controller User Manual

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_spinctrl.xrc’.

The key points of the example regarding AVC are the following.

During wxGlade editing, the same name 'spin_value' was given to the spin button and
to the label.

The AVC package is imported at program begin (from avc import *).

The application class is derived from the class PySimpleApp of wxWidgets and from
the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).

A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'spin_value' variable and to initialize
the widgets values with the initial value of the variable (example.avc init()).

Example files in directory 'examples' of distribution: program 'wx_spinctrl.py' , Ul descriptor
'wx_spinctrl.xrc'.

13.2. calendar example

This example shows the graphic rendering of the calendar widget displaying the default date of
January 1, 2000.

sun Mon Tue Wed Thu Fri Sat

The connected variable can be a list or a tuple with the format yyyy, mm, dd: four digit year,
two digit month, two digit day. Month and day numbers start from 1.

Fabrizio Pollastri 76/115

AVC, Application View Controller User Manual

1 3 . 2 . 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2013 Fabrizio Pollastri

.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support
from avc import * # AVC for wx

WXGLADE_ XML = 'wx_calendar.xrc'# GUI wxGlade descriptor

class Example(wx.PySimpleApp,AVC):

Calendar widget connected to label widget (GTK)

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml _resource = xrc.XmlResource(WXGLADE XML)
self.root = xml _resource.LoadFrame(None, 'frame 1')
self.root.Show()

all types of connected variables
self.calendar value = (2000,1,1)

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit
END

The GUI layout was previously edited with wxGlade Designer and saved to the file
‘wx_calendar.xrc’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the Wx event loop is entered the calendar date is set to the initial value of the
connected variable: January 1, 2000.

Example files in directory 'examples' of distribution: program 'wx_calendar.py', GUI descriptor
'wx_calendar.xrc'.

13.3. color dialog example

This example shows the graphic rendering of the color selection widget displaying the default

Fabrizio Pollastri 77/115

AVC, Application View Controller User Manual

color of 0.25 red, 0.5 green, 1.0 blue, 1.0 alpha. Color selection has two windows. The base
window displaying the connected variable with the default color values (first image). The color
dialog window displaying graphically the current color and allowing user interaction to choose a
new color (second image).

The connected variable can be a list or a tuple with the format red, green, blue, alpha, where
each color component spans the value range 0.0 - 1.0 . Alpha is the color opacity: 1.0 is the
maximun opacity.

1 3 . 3 . 1 « Python source

#!/usr/bin/python
.copyright : (c) 2013 Fabrizio Pollastri
.license : GNU General Public License v3

Fabrizio Pollastri 78/115

AVC, Application View Controller User Manual

import wx # wx tool kit bindings

from wx import xrc # xml resource support

from avc import * # AVC for wx

WXGLADE XML = 'wx_colorpicker.xrc' # GUI wxGlade descriptor

class Example(wx.PySimpleApp,AVC):

Color picker widget connected to label widget (wx)

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml resource = xrc.XmlResource(WXGLADE XML)

self.root = xml _resource.LoadFrame(None, 'frame 1')

since color picker not supported by wxglade add it by hand

self.gridsizer = self.root.GetSizer()

self.colorpicker = wx.ColourPickerCtrl(self.root,
name='color _value colorpicker')

self.gridsizer.Add(self.colorpicker,Q,wx.CENTER|wx.EXPAND)

self.root.Show()

the connected variable
self.color value = (0.25,0.5,1.,1.)

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit
END

The GUI layout was previously edited with wxGlade Designer and saved to the file
‘wx_colorpicker.xrc’.

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the Wx event loop is entered the color is set to the initial value of the connected
variable: 0.25,0.5,1.0,1.0 .

Example files in directory 'examples' of distribution: program 'wx_colorpicker.py', GUI descriptor
'wx_colorpicker.xrc'.

13.4. Counter example

For a functional description of the graphical interface see the GTK+ “Counter example” at
page 31.

Fabrizio Pollastri 79/115

AVC, Application View Controller User Manual

AVC wx counter example I

132

13 .4. 1 =« Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri

.license : GNU General Public License v3

import wx # wx tool kit bindings

from wx import xrc # xml resource support

from avc import * # AVC

WXGLADE XML = 'wx_counter.xrc' # GUI wxGlade descriptor

LOW SPEED = 0.5 #--

HIGH SPEED = 0.1 #- low and high speed period (ms)

class ExampleGUI (wx.PySimpleApp):
"Counter GUI creation"

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml resource = xrc.XmlResource(WXGLADE XML)
self.root = xml resource.LoadFrame(None, 'frame 1')
self.root.Show()

timer
self.timerl = None

def timer(self,period, function):
"Start a wx timer calling back 'function' every 'period' seconds."
if not self.timerl:
self.timerl = wx.Timer(self.root,wx.NewId())
self.root.Bind(wx.EVT TIMER, function,self.timerl)
self.timerl.Start(period * 1000,oneShot=True)

class ExampleMain(AVC):

A counter displayed in a Label widget whose count speed can be
accelerated by checking a check button.

def init (self,qui):

save gui
self.gui = gui

Fabrizio Pollastri 80/115

AVC, Application View Controller User Manual

the counter variable and its speed status
self.counter = 0
self.high speed = False

start incrementer timer
self.qui.timer(LOW_SPEED,self.incrementer)

def incrementer(self,event):
Counter incrementer: increment period = LOW SPEED, if high speed is False,
increment period = HIGH SPEED otherwise. Return False to destroy previous
timer.
self.counter +=1
if self.high speed:
period = HIGH SPEED
else:
period = LOW_SPEED
self.qui.timer(period,self.incrementer)

def high speed changed(self,value):
"Notify change of counting speed to terminal"
if value:
print ‘counting speed changed to high'
else:
print 'counting speed changed to low'

#it## MAIN

example gui = ExampleGUI() # create the application GUI
example = ExampleMain(example gui) # instantiate the application
example.avc_init() # connect widgets with variables
example gui.MainLoop() # run wx event loop until quit
END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_counter.xrc’.
The key points of the example regarding AVC are the following.

e During wxGlade editing, the name 'counter' was given to the static text and the name
'high_speed' was given to the check box.

e The AVC package is imported at program begin (from avc import *).

e The application class is derived from the class PySimpleApp fo wxWidgets and from
the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).

e A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

e A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment speed
(self.high speed = False).

e The avc_ init method is called after the instantation of the application class
(example.avc _init()) to realize the connections between the 'counter' variable and the
label widget and between the the 'high_speed' variable and the check button, the label
widget is initialized with the initial value of the 'counter' variable.

Example files in directory 'examples' of distribution: program 'wx_counter.py' , Ul descriptor
‘wx_counter.xrc'.

Fabrizio Pollastri 81/115

AVC, Application View Controller

13.5. Label example

This example shows the formatting capabilities of the label widget. For each supported type of
the connected variable, a formatting string is defined and a sample value of the connected
with formatting and the other with the

variable is displayed into two label widgets: one
standard python string representation.

User Manual

AVC wx static text example

Control type Format string Label with format
boolean %d 1
float %f 1.000000
int %d 1
list %d,%d.%d 1,23
string %s abc
tuple %d,%d,%d %d,%d %d
object
with attributes %(x)d %ly)d 1,2
x=1,y=2

Label without format

True
1.0
1
(1,2 3]
abc
(1,2,3)

<__main__.0bj instance at 0xb67dd2ac=

1 3 . 5 . 1 = Python source

#!/usr/bin/python
.copyright (c) 2008 Fabrizio Pollastri
.license : GNU General Public License v3

import wx
from wx import xrc

from avc import *

WXGLADE XML = 'wx_ label.xrc'

class Example(wx.PySimpleApp,AVC):

def init (self):

wx.PySimpleApp. init (self)

create GUI

xml_resource =
self.root =
self.root.Show()

self.bool value = True

init wx application base class

all types of connected variables

wx tool kit bindings
xml resource support

AVC

GUI wxGlade descriptor

Showcase of formatting capabilities for the label widget

xrc.XmlResource (WXGLADE XML)
xml resource.LoadFrame(None, 'frame 1')

Fabrizio Pollastri

82/115

AVC, Application View Controller User Manual

self.float value = 1.0
self.int _value =1

self.list value = [1,2,3]

self.str value = 'abc'
self.tuple value = (1,2,3)
class 0Obj:

"A generic object with 2 attributes x,y"
def init (self):
self.x =1
self.y = 2
self.obj value = 0bj()

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_label.xrc’.
Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e For each control type (for each row) the two label widgets, one in the column “Label
with format” and one in the column “Label without format”, are connected to the
variable of the corresponding type. For example, in row “boolean”, both label widgets
are called “bool_value”, so they connect to the variable self.bool value .

e When the wxWidget event loop is entered both columns are set to display the initial
values of the connected variables. For example, in row “integer”, both labels are set to
display the integer value 1.

e The differences of representation between the column “Label with format” and the
column “Label without format” reflect the different printout results coming from the
formatting capabilities of the label widget and from str, the generic textual rendering
function of python.

Example files in directory 'examples' of distribution: program 'wx_ label.py', Ul descriptor
'‘wx_label.xrc'.

13.6. showcase example

This example shows a table of all widget/variable type combinations supported by AVC. The
program creates a window with three columns: the first shows the type of the connected
variable, the second shows all the widgets that can be connected to that type of variable, the
third shows the current value of each variable. Each row of the window represent a
widgets/variable combination as follows.

e Row 1: memoryless button and bitmap button with boolean variable, pressed = True,
unpressed = False.

e Row 2: buttons with memory, toggle and check box, pressed = True, unpressed = False.

e Row 3: mutually exclusive choices widgets, radio box buttons numbered from 0 to 2, a
choice with 3 items and a combo box with 3 items, index variable = number of checked
radio button and selected item of combo box.

e Row 4: integer input/output widgets, spin control, text control and slider.

Fabrizio Pollastri 83/115

AVC, Application View Controller User Manual

Row 5: float input/output widget, text control.
Row 6: string input/output widget, text control.
Row 7: string input/output widget, text control view/edit.

Row 8: status messages, status bar.

The text label widget is used in all output modes for the column of the connected variable
values. The program increment the value of each connected variable looping top-bottom at
three rows per seconds. The user can also change the values in the connected variables
interacting with the widgets.

AVC wx showcase example

Control Type Widgets Contral Value
_ True
:
boolean True
toggle button|[7] check box
radio box
ind @ choice 0
index .
(integer) | O choice 1 [choice 0| % "chmce 0 ‘ vl 0
) choice 2
) N J—
integer |9 |_][9]u_;:- g
string | AAAAAAAA ARAAAAAA
line of text, line of text, line of text line of text, line of text, line of text
line of text, line of text, line of text line of text, line of text, line of text
string
string status bar is below

1 3 . 6 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2007 Fabrizio Pollastri

.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support
from avc import * # AVC

WXGLADE XML = 'wx_ showcase.xrc' # GUI wxGlade descriptor
INCREMENTER PERIOD = 333 # ms

class Example(wx.PySimpleApp,AVC):
"A table of all supported widget/control type combinations"

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

Fabrizio Pollastri 84/115

AVC, Application View Controller User Manual

create GUI

xml _resource = xrc.XmlResource(WXGLADE XML)
self.root = xml resource.LoadFrame(None, 'frame 1")
self.root.Show()

the control variables
self.booleanl False
self.boolean2 False
self.index = 0
self.integer = 0
self.float = 0.0
self.string = "'
self.textview = ''
self.status = "'

start counter incrementer at low speed

self.timer = wx.Timer(self.root,wx.NewId())
self.root.Bind(wx.EVT TIMER,self.incrementer wrap,self.timer)
self.timer.Start(int (INCREMENTER PERIOD),oneShot=False)
self.increment = self.incrementer()

def incrementer wrap(self,event):
"Discard event argument and call the real incrementer iterator"
self.increment.next()

def incrementer(self,*args):
Booleans are toggled, radio button index is rotated from first to last,
integer is incremented by 1, float by 0.5, string is appended a char
until maxlen when string is cleared, text view/edit is appended a line
of text until maxlen when it is cleared. Status bar message is toggled.
Return True to keep timer alive.

while True:

self.booleanl not self.booleanl

yield True

self.boolean2 not self.boolean2

yield True

if self.index >= 2:
self.index = 0

else:
self.index += 1
yield True

self.integer +=1
yield True

self.float += 0.5
yield True

if len(self.string) >= 10:
self.string = "'

else:
self.string += 'A'
yield True

if len(self.textview) >= 200:

Fabrizio Pollastri 85/115

AVC, Application View Controller User Manual

self.textview = ''
else:

self.textview += 'line of text, line of text, line of text\n'
yield True

if not self.status:

self.status = 'status message'
else:

self.status = "'
yield True

MAIN
instantiate the application

connect widgets with variables
run wx event loop until quit

example = Example()
example.avc_init()
example.MainLoop()

END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_showcase.xrc’.

The key points of the example regarding AVC are the following.

e During Glade editing, the following names were given to the widgets.

’

Row widget hame

button booleanl button

1 |bitmap button booleanl bitmapbutton
output value label booleanl var
togglebutton boolean2_ togglebutton

2 checkbox boolean2_ checkbox
output value label boolean2 var
radiobox index radiobox

3 choice index__choice
combobox index__combobox
output value label index var
spinctrl integer__spinctrl
textctrl integer__textctrl

4 : : :
slider integer _slider
output value label integer__var

5 textctrl float__entry
output value label float var

6 textctrl string__textctrl
output value label string__var
textctrl textview textctrl

7 :
output value label textview var

8 statusbar status__statusbar
output value label status_var

e The AVC package is imported at program begin (from avc import *).

e The application class is derived from the class PySimpleApp of wxWidgets and from
the class AVC of AVC (class Example(wx.PySimpleApp,AVC):).

e The following variables are declared in the application.

self.booleanl

False

self.boolean2 False
self.index = 0

self.integer = 0

86/115

Fabrizio Pollastri

AVC, Application View Controller User Manual

self.float = 0.0
self.string = "'
self.textview = ''
self.status = "'

e The avc init method is called after the instantation of the application class
(example.avc_init()) to realize the connections of all widegts/variable combinations and
to initialize the widgets values with the initial value of the connected variable .

Example files in directory 'examples' of distribution: program 'wx_showcase.py' , Ul descriptor
'‘wx_showcase.xrc'.

13.7. countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

B AVC wx countdown example - O X
CLOSE ALL WINDOWS

B AVC wx countdown example - O X

1 3 . 7 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri

.license : GNU General Public License v3

import wx # wx tool kit bindings

from wx import xrc # xml resource support

from avc import * # AVC

from random import randint # random integer generator

WXGLADE MAIN = 'wx countdown main.xrc' # main window glade descriptor
WXGLADE_CD = 'wx_countdown.xrc' # count down window glade descriptor
COUNTDOWN PERIOD = 500 # count down at 2 unit per second

MAX CREATION PERIOD = 4000 # create a new count down at 1/2 this

class Countdown(AVC):

A countdown counter displayed in a Label widget. Count starts at given
value. When count reaches zero the counter and its GUI are destroyed.

Fabrizio Pollastri 87/115

AVC, Application View Controller User Manual

def init (self,count start=10):

create GUI

xml _resource = xrc.XmlResource(WXGLADE_ CD)
self.root = xml _resource.LoadFrame(None, 'frame 1')
self.root.Show()

init the counter variable
self.counter = count start

connect counter variable with label widget
self.avc_connect(self.root)

start count down

self.timer = wx.Timer(self.root,wx.NewId())
self.root.Bind (wx.EVT TIMER,self.decrementer,self.timer)
self.timer.Start(COUNTDOWN PERIOD)

def decrementer(self,event):
"Counter decrementer. Return False to destroy previous timer."
self.counter -=1
if not self.counter:
counter reached zero: destroy this countdown and its GUI
self.root.Close()

class Example(wx.PySimpleApp,AVC):
Continuously create at random intervals windows with a countdown from 10 to 0.
When a countdown reaches zero, its window is destroyed. Also create a main
window with a "close all" button.

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml _resource = xrc.XmlResource(WXGLADE MAIN)
self.root = xml resource.LoadFrame(None, 'frame 1")
self.root.Show()

terminate application at main window close
self.root.Bind(wx.EVT CLOSE,self.on destroy)

close all button connected variable
self.close all = False

create count down creation timer
self.timer = wx.Timer(self.root,wx.NewId())
self.root.Bind(wx.EVT TIMER,self.new _countdown,self.timer)

create the first countdown
self.new_countdown(None)

def new countdown(self,event,count start=10):
"Create a new countdown"

Fabrizio Pollastri 88/115

AVC, Application View Controller User Manual

create a new countdown
Countdown(count start)

autocall after a random delay
self.timer.Start(randint(1,MAX CREATION_ PERIOD),oneShot=True)

def on_destroy(self,window):
"Terminate program at window destroy"
self.Exit()

def close all changed(self,value):
"Terminate program at 'close all' button pressing"
self.Exit()

MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit
END

The GUI layout was previously edited with wxGlade and saved to the file

‘wx_countdown_main.xrc’ for the main window and to the file 'wx_countdown.xrc' for the
counter windows.
The key points of the example regarding AVC are the following.

During wxGlade editing of the main window, the name 'close_all' was given to the
button widget; during wxGlade editing of the counter window, the name 'counter' was
given to the label widget.

The AVC package is imported at program begin (from avc import *).

Both the application class and the counter class are derived from the AVC class (class
Example (PySimpleApp,AVC): | class Countdown(AVC):).

A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close all = False).

The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

The avc_init method is called after the instantiation of the application class
(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count start)

The avc_connect method is called at the instantation of the Countdown class

(self.avc _connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the 'counter' variable.

Example files in directory 'examples' of distribution: program 'wx_countdown.py' , wxGlade
descriptors 'wx_countdown_main.xrc' anc 'wx_countdown.xrc'.

13.8. List tree control example

Fabrizio Pollastri 89/115

AVC, Application View Controller User Manual

The first row of this example shows the display capabilities of a widget in list view mode:
display of 2D tabular data. The second row shows the display capabilities of a widget in tree
mode: display of a hierarchical data tree. For each row, it is showed the connected python data
equivalent to data displayed by each widget. The rows of the list view are rolled down by one
position every 2 seconds.

= wx list tree ctrl example = =)
Data Structure Control Value Widget
collint colz str
{'body": [[1. 'one'], [2, 'twa'], [3, 'three']], 1 one
list 'head': ['coll int', 'col2 str']} 5 two
3 three
¥ one

{'body": {'1.1" 'one one', '1.2": 'one two', '1" one one
‘one', '2": 'two', '2.2": 'two two', '2.1"; 'two one'}} one two

tree v two
two one

two two

1 3 . 8 . 1 = Python source

#!/usr/bin/python
.copyright : (c) 2008 Fabrizio Pollastri.

.license : GNU General Public License v3

import wx # wx tool kit bindings
from wx import xrc # xml resource support
from avc import * # AVC

import copy # object cloning support

WXGLADE XML = 'wx_listtreectrl.xrc' # GUI wxGlade descriptor

UPDATE_PERIOD = 2000 # ms

class Example(wx.PySimpleApp,AVC):

Showcase of display capabilities for the 1list control and tree control widgets

def init (self):

init wx application base class
wx.PySimpleApp. init (self)

create GUI

xml _resource = xrc.XmlResource(WXGLADE XML)
self.root = xml resource.LoadFrame(None, 'frame 1")
self.root.Show()

connected variables

self.list = {'head':['coll int', 'col2 str'], \
'body':[[1,'one'],[2,"'two"'],[3, 'three']]}

self.list work = copy.deepcopy(self.list)

self.tree = {'body':{ \

Fabrizio Pollastri 90/115

AVC, Application View Controller User Manual

root rows

'‘1':'one', \

'2':"two', \

children of root row '1l'
‘1.1':'one one', \
'1.2':'one two', \

children of root row '2'
'2.1':'two one', \
'2.2"':'two two'}}

start a wx timer calling back 'function' every 'period' seconds."
self.timerl = wx.Timer(self.root,wx.NewId())

self.root.Bind(wx.EVT TIMER,self.update wrap,self.timerl)
self.timerl.Start (UPDATE_PERIOD,oneShot=False)

def update wrap(self,event):

"Discard event argument and call the real update iterator"
self.update().next()

def update(self):

Tabular data rows data are rolled down.
rows_num = len(self.list['body'])
while True:
save last row of data
last row = self.list work['body']1[-1]
shift down one position each data row
for i in range(1l,rows_num):
self.list work['body'][-1] = \
self.list work['body'][-1-1i]
copy last row into first position
self.list_work['body'][0] = last_row
copy working copy into connected variable
self.list = self.list work

yield True
MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
example.MainLoop() # run wx event loop until quit
#4444 END

The GUI layout was previously edited with wxGlade and saved to the file ‘wx_listtreectrl.xrc’.
Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the list tree view example are the same of the GTK+ “List tree view example”example
at page 41.

Example files in directory 'examples' of distribution: program 'wx_listtreectrl.py' , wxGlade
descriptor 'wx_listtreectrl.xrc'.

Fabrizio Pollastri 91/115

AVC, Application View Controller User Manual

14. Swing examples

14.1. Button example

The pressed status of a button is replicated as a boolean into a label.

14. 1 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

class Example(AVC):

A button whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing button example',bsize=(300,80),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('boolean',swing.SwingConstants.CENTER,
name="boolean__label"',))

root.add(swing.JButton('button',name="'boolean__button'))

root.show()

the variable holding the button state
self.boolean = False

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the following.

Fabrizio Pollastri 92/115

AVC, Application View Controller User Manual

The AVC package is imported at program begin (from avc import *).
The application class is derived from the class AVC of AVC (class Example(AVC):).

In GUI creation statements, the same name 'boolean' was given to the button and to
the label widgets.

A boolean variable with an initial value of False and name 'boolean' is declared in the
application (self.boolean = False).

The avc_init method is called after the instantation of the application class, to realize
the connections of the two widgets through the 'boolean' variable and to initialize the

widgets values with the initial value of the variable (example.avc_init()).

Example files in directory '‘examples' of distribution: program 'swing_button.py'.

14.2. check box example

The clicked status of a check box is replicated into a label.

B AVE Swing check box example Er]@
True [v]check box

14 . 2 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

class Example(AVC):

A check box whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing check box example',b size=(350,80),
defaultCloseOperation = swing.JFrame.EXIT ON_CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('boolean',swing.SwingConstants.CENTER,
name='boolean__label',))

root.add(swing.JCheckBox('check box', name='boolean__checkbox'))

root.show()

the variable holding the check box value
self.boolean = False

MAIN

Fabrizio Pollastri 93/115

AVC, Application View Controller User Manual

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of button example.

Example files in directory 'examples' of distribution: program 'swing_checkbox.py".

14.3. color chooser example

This example shows the graphic rendering of the color selection widget displaying the default
color of 0.25 red, 0.5 green, 1.0 blue, 1.0 alpha, the top tuple of nhumbers. Below, the color
dialog window displaying graphically the current color and allowing user interaction to choose a
new color.

(0.25098039215686274, 0.5019607843137255, 1.0, 1.0)
[Swatches | HSV [HSL [RGB | CMYK

Recent:

Preview

a - B cSample Text Sample Text

. u . Sample Text Sample Text -

The connected variable can be a list or a tuple with the format red, green, blue, alpha, where
each color component spans the value range 0.0 - 1.0. Alpha is the color opacity: 1.0 is the
maximun opacity.

14 . 3 . 1 =« Python source

#!/usr/bin/env jython

.copyright : (c) 2013 Fabrizio Pollastri

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

Fabrizio Pollastri 94/115

AVC, Application View Controller User Manual

class Example(AVC):

A color chooser replicated into a label (Swing),

def init (self):

create GUI

root = swing.JFrame('AVC Swing color chooser example',k size=(900,380),
defaultCloseOperation = swing.JFrame.EXIT ON_CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('%s',name="'color _value_ label'))

root.add(swing.JColorChooser(name='color _value colorchooser'))

root.show()

the variable holding the color chooser value
self.color value = (0.25,0.5,1.,1.)

##4# MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
##t## END

Apart the general requirements of AVC, already pointed out in the other examples, the relevant
points of the label example about AVC are the following.

e When the SWING event loop is entered the color is set to the initial value of the
connected variable: 0.25,0.5,1.0,1.0 .

Example files in directory 'examples' of distribution: program 'swing_colorchooser.py".

14.4. combo box example

The selection of a combo box is replicated into a label.

[R swing Box example ==
© [ene - |

14.4. 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3
from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings

Fabrizio Pollastri 95/115

AVC, Application View Controller User Manual

from avc import * # AVC for Swing

class Example(AVC):

A combo box whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing combo box example',size=(350,110),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('index"', name='radio__label',))

root.add(swing.JComboBox(['choiche 0', 'choiche 1','choiche 2'],
name='radio__combobox'))

root.show()

the variable holding the combo box selection index
self.radio = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'radio' was given to the combo box and to
the label widgets.

e A integer variable with an initial value of 0 and name 'radio' is declared in the
application (self.radio = 0).

Example files in directory 'examples' of distribution: program 'swing_combobox.py"'.

14. 5 » Countdown example

This example continuously creates at random intervals windows displaying a counter. Each
counter starts from 10 and is independently decremented. When the count reaches zero, the
counter window is destroyed. Also a main window with a “close all windows” button is
displayed.

Fabrizio Pollastri 96/115

AVC, Application View Controller User Manual

14 . 5 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri
.license : GNU General Public License v3

from javax import swing
from java import awt

swing toolkit bindings
awt toolkit bindings
from avc import * AVC for Swing

from random import randint
import sys

random integer generator
system support

FIRST COUNT DELAY = 1000
COUNTDOWN_PERIOD = 500
MAX_CREATION PERIOD = 4000

let avc init be called
count down at 2 unit per second
create a new count down at 1/2 this

HHHF O OHH O OH KK

class Countdown (AVC):
A countdown counter displayed in a Label widget. Count starts at given
value. When count reaches zero the counter and its GUI are destroyed.

def init (self,count start=10):

create GUI

self.root = swing.JFrame('AVC Swing countdown example',size=(350,60),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

self.root.layout = awt.FlowLayout()

self.root.add(swing.JLabel('counter', name="'counter__label',))

self.root.show()

init the counter variable
self.counter = count start

connect counter variable with label widget
self.avc_connect(self.root)

start count down

self.timer = swing.Timer (COUNTDOWN PERIOD,None)
self.timer.actionPerformed = self.decrementer
self.timer.start()

def decrementer(self,*args):
"Counter decrementer. Return False to destroy previous timer."
self.counter -=1

if not self.counter:
counter reached zero: destroy this countdown and its GUI

Fabrizio Pollastri 97/115

AVC, Application View Controller User Manual

class Example(AVC):

Continuously create at random intervals windows with a countdown from 10 to 0.
When a countdown reaches zero, its window is destroyed. Also create a main
window with a "close all" button.

def init (self):

def new countdown(self,event,count start=10):

def close_all_changed(self,value):

sys.exit()
MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

self.root.dispose()

create main window

self.root = swing.JFrame('AVC Swing countdown example',k size=(350,60),
defaultCloseOperation = swing.JFrame.EXIT ON _CLOSE)

self.root.layout = awt.FlowLayout()

self.root.add(swing.JButton('CLOSE ALL',name="'close_all__button',))

self.root.show()

create the first countdown after avc init call
self.timer = swing.Timer (FIRST COUNT DELAY,bNone)
self.timer.actionPerformed = self.new countdown

self.timer.start()

close all button connected variable
self.close_all = False

"Create a new countdown"

create a new countdown
Countdown(count start)

autocall after a random delay
self.timer.setDelay(MAX CREATION PERIOD)

"Terminate program at 'close all' button pressing"
for frame in self.root.getFrames():
frame.dispose()

The key points of the example regarding AVC are the following.

In GUI creation statements of the main window, the name 'close_all' was given to the

button widget, while in counter window creation, the name 'counter' was given to the
label widget.

The AVC package is imported at program begin (from avc import *).
Both the application class and the counter class are derived from the AVC class (class

Fabrizio Pollastri 98/115

AVC, Application View Controller User Manual

Example(AVC): | class Countdown(AVC):).

e A boolean variable with an initial value of False and name 'close_all' is declared in the
application (self.close all = False).

e The method 'close_all_changed' is defined in the application to handle the press event
of the 'close all windows' button.

e The avc init method is called after the instantiation of the application class
(example.avc_init()) to init AVC logic and to realize the connection of the 'close all
windows' button to the 'close_all' variable.

e A integer variable with an initial default value of 10 and name 'counter' is declared in
the Countdown class (self.counter = count _start)

e The avc_connect method is called at the instantation of the Countdown class
(self.avc_connect(self.root)) with argument the window widget of the counter. This
call realizes the connection of the label widget to the '‘counter’ variable.

Example files in directory 'examples' of distribution: program 'swing_countdown.py'.

14.6. counter example

For a functional description of the graphical interface see the GTK+ “Counter example” at
page 31.

137 [¥] high speed

14. 6 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings

from java import awt # awt toolkit bindings

from avc import * # AVC for Swing

LOW SPEED = 500 #--

HIGH SPEED = 100 #- low and high speed period (ms)

class ExampleGUI:
"Counter GUI creation"

def init (self):

create GUI

root = swing.JFrame('AVC Swing counter example',6size=(350,60),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowlLayout()

root.add(swing.JLabel('counter', name="'counter__label',))

root.add(swing.JCheckBox('high speed',name='high_speed__checkbox"'))

root.show()

create a timer for incrementer
self.timer = swing.Timer (LOW_SPEED,None)

Fabrizio Pollastri 99/115

AVC, Application View Controller User Manual

class ExampleMain(AVC):
A counter displayed in a Label widget whose count speed can be
accelerated by checking a check box.

def init (self,gqui):

save GUI
self.gui = gui

the counter variable and its speed status
self.counter = 0
self.high_speed = False

start variable incrementer
self.gui.timer.actionPerformed = self.incrementer
self.qui.timer.start()

def incrementer(self,*args):
Counter incrementer: increment period = LOW SPEED, if high speed is False,
increment period = HIGH SPEED otherwise. Return False to destroy previous
timer.
self.counter +=1
if self.high_speed:
period = HIGH SPEED
else:
period = LOW_SPEED
self.qui.timer.setDelay(period)
return True

def high_speed_changed(self,value):
"Notify change of counting speed to terminal"
if value:
print 'counting speed changed to high'
else:
print 'counting speed changed to low'

MAIN

example gui = ExampleGUI() # create the application GUI
example = ExampleMain(example gui) # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the name 'counter' was given to the label and the name
'‘high_speed' was given to the check box.

e A integer variable with an initial value of 0 and name 'counter' is declared in the
application to hold the counter value (self.counter = 0).

e A boolean variable with an initial value of False and name 'high_speed' is declared in
the application to hold the speed status of the counter increment speed

Fabrizio Pollastri 100/115

AVC, Application View Controller User Manual

(self.high speed = False).

Example files in directory '‘examples' of distribution: program 'swing_counter.py".

14.7. Progress bar example

A progress bar is continuosly first pulsed and then advanced from 0% to 100%. Its value

(negative when pulsed, 0.0 - 1.0 when advanced from 0% to 100%) is replicated into a label.

£ AVE Swing progress bar example Er]@
02]

14 . 7 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing
INCREMENTER PERIOD = 333 # ms

class Example(AVC):

A progress bar whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing progress bar example',6size=(350,60),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowlLayout()

root.add(swing.JLabel('progressbar', name="'progresshar__label',))

root.add(swing.JProgressBar(name="'progresshar__progressbar'))

root.show()

the variable holding the progress bar value
self.progresshar = -1.0

start variables incrementer

increment = self.incrementer()

self.timer = swing.Timer (INCREMENTER PERIOD,None)
self.timer.actionPerformed = lambda event: increment.next()
self.timer.start()

def incrementer(self):

Progress bar is alternatively shuttled or incremented from 0 to 100%

while True:

Fabrizio Pollastri 101/115

AVC, Application View Controller User Manual

if self.progressbar >= 0.9999:
self.progressbar = -1.0
else:
self.progressbar = round(self.progressbar + 0.1,1)
yield
MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'progressbar' was given to the progress
bar and to the label widgets.

e A float variable with an initial value of -1.0 and name 'progressbar' is declared in the
application (self.progressbar = -1.0).

Example files in directory 'examples' of distribution: program 'swing_progressbar.py'.

14.8. Radio button example

The selection status of three radio buttons is replicated into a label.

Ed AVC Swing radio button example @@
) choice 0
1 @ |choice 1
) choice 2

14 . 8 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

class Example(AVC):

A radio button whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing radio button example',size=(350,100),
defaultCloseOperation = swing.JFrame.EXIT ON_CLOSE)

Fabrizio Pollastri 102/115

AVC, Application View Controller User Manual

root.layout = awt.FlowLayout()

root.add(swing.JLabel('index"', name='radio__label',))

radio buttonl swing.JRadioButton('choice 0',name='radio__radiobuttonl')
radio button2 swing.JRadioButton('choice 1',6name='radio_radiobutton2')
radio_button3 swing.JRadioButton('choice 2',6name='radio__radiobutton3')
radio group = swing.ButtonGroup()

radio group.add(radio buttonl)

radio group.add(radio button2)

radio_group.add(radio button3)

radio box = swing.Box(swing.BoxLayout.Y AXIS)

radio box.add(radio buttonl)

radio box.add(radio button2)

radio box.add(radio button3)

root.add(radio box)

root.show()

the variable holding the radio button selection index
self.radio = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'radio' was given to the three radio button
and to the label widgets.

e A integer variable with an initial value of 0 and name 'radio' is declared in the
application (self.radio = 0).

Example files in directory 'examples' of distribution: program 'swing_radiobutton.py'.

14.9. silider example

A slider whose value is replicated into a label.

Ed AVC Swing radio button example @@
) choice 0
1 @ |choice 1
> choice 2

14. 9 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

Fabrizio Pollastri 103/115

AVC, Application View Controller User Manual

class Example(AVC):

A slider whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing slider example',size=(320,60),
defaultCloseOperation = swing.JFrame.EXIT ON_CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('integer', name="'integer__label',))

root.add(swing.JSlider(name="'integer__slider'))

root.show()

the variable holding the slider value
self.integer = 0

##4# MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
##t## END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'integer' was given to the slider and to the
label widgets.

e A integer variable with an initial value of 0 and name ‘'integer' is declared in the
application (self.integer = 0).

Example files in directory 'examples' of distribution: program 'swing_slider.py'.

14.10. Spinner example

For a functional description of the graphic interface see the GTK+ “Spin button example” at
page 27.

'83 AVC swing spinner example =|F X
0 OE

14. 10. 1. Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3
from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings

Fabrizio Pollastri 104/115

AVC, Application View Controller User Manual

from avc import * # AVC for Swing

class Example(AVC):

A spinner whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing spinner example',6 size=(320,60),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('%s',name="'spin_value__ label', preferredSize=(80,20)))

root.add(swing.JSpinner(name="'spin_value__spinner', preferredSize=(80,20)))

root.show()

the variable holding the spinner value
self.spin_value = 0

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'spin_value' was given to the spinner and
to the label widgets.

e A integer variable with an initial value of 0 and name 'spin_value' is declared in the
application (self.spin_value = 0).

Example files in directory 'examples' of distribution: program 'swing_spinner.py'.

14.11. Table example

This example shows the display capabilities of a table widget of 2D tabular data arranged as
explained in “List view"“. The rows of the list view are rolled down by one position every 2
seconds. For each row, it is showed the connected python data equivalent to data displayed by
each widget. The same data structure is also displayed as string into a label widget.

2 g table exa SEE
{'head: ['coll int’, 'col2 str'l, 'body': [[2, 'two'], [3, 'three], [1, 'one'1]}
coll int col2 str
two

3 three

1 one

14. 1 1 . 1 =« Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

Fabrizio Pollastri 105/115

AVC, Application View Controller

User Manual

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

import copy # object cloning support
UPDATE_PERIOD = 2000 # ms

class Example(AVC):

Showcase of display capabilities for the table widget

def init (self):

create GUI

root = swing.JFrame('AVC Swing table example',bsize=(500,120),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel(name="'1list__ label',))

table = swing.JTable(name='1list__table')

scrollpane = swing.JScrollPane()

scrollpane.setPreferredSize(awt.Dimension(200,65))

scrollpane.getViewport().setView(table)

root.add(scrollpane)

root.show()

connected variables

self.list = {'head':['coll int', 'col2 str'], \
'body':[[1,'one'],[2,"'two'],[3, 'three']l]l}

self.list work = copy.deepcopy(self.list)

start variables update

update = self.update()

self.timer = swing.Timer (UPDATE_PERIOD,None)
self.timer.actionPerformed = lambda event: update.next()
self.timer.start()

def update(self):

Tabular data rows data are rolled down.
rows num = len(self.list['body'])
while True:
save last row of data
last _row = self.list work['body'][-1]
shift down one position each data row
for i in range(l,rows num):
self.list work['body'][-i] = \
self.list work['body'][-1-1i]
copy last row into first position
self.list work['body']1[0] = last row
copy working copy into connected variable
self.list = self.list work
yield

Fabrizio Pollastri 106/115

AVC, Application View Controller

User Manual
MAIN
example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing

“button example”,
only the following differs.

e In GUI creation statements, the same name 'list' was given to the table and to the label
widgets.

e A variable with a proper initial value and name 'list' is declared in the application
(self.list = {'head':['coll int', 'col2 str'l], 'body':[[1,'one'],[2, " 'two'],

[3,'three'11}0).

Example files in directory 'examples' of distribution: program 'swing_table.py'.

14.12. Text area example

This example shows a string displayed into a text area widget. The string can be edited in the
text area. The content of the text area is replicated into a label widget.

2 AVE'swing text area example Er]@
0123456789

0123456789

14. 12 . 1 =« Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

class Example(AVC):

A text area whose value is replicated into a label

def init (self):

create GUI

root = swing.JFrame('AVC Swing text area example',size=(480,80),
defaultCloseOperation = swing.JFrame.EXIT ON CLOSE)

root.layout = awt.FlowLayout()

root.add(swing.JLabel('String',size=(100,60),name="'textview__ label'))

root.add(swing.JTextArea(rows=2,columns=20,name="textview__textarea'))
root.show()

the variable holding the text area strings/lines

Fabrizio Pollastri 107/115

AVC, Application View Controller User Manual

self.textview = '0123456789"

MAIN

example = Example() # instantiate the application
example.avc_init() # connect widgets with variables
END

The key points of the example regarding AVC are the same of the Swing “button example”,
only the following differs.

e In GUI creation statements, the same name 'textview' was given to the text area and
to the label widgets.

e A string variable with an initial value of '0123456789' and name 'textview' is declared
in the application (self.textview = '0123456789"').

Example files in directory 'examples' of distribution: program 'swing_textarea.py'.

14.13. Text field example

This example shows three text field widgets that can be used as data entry: the first for integer,

the second for float and the third for string. The value of each text field is replicated into a label
widget.

== EE
integer entry O liQ
float entry 0.0 ’007
string entry abc ,ab(i

14. 13 . 1 = Jython source

#!/usr/bin/env jython
.copyright : (c) 2009 Fabrizio Pollastri.

.license : GNU General Public License v3

from javax import swing # swing toolkit bindings
from java import awt # awt toolkit bindings
from avc import * # AVC for Swing

class E